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Abstract

This thesis consists of two separate parts. Both concern programming lan-
guage design, the first in the domain of web programming and the other for
security.

The first part consists of two papers, both discussing various aspects of
how to extend the general purpose programming language Haskell to make it
serve as a specialized scripting language for writing dynamic web pages. The
first paper in this area concerns one specific theoretic aspect of this extension,
namely how to extend Haskell with regular expression pattern matching. We
discuss syntax, typing and semantics for regular expression patterns, and
show an implementation of the system in Haskell. In the second paper we
give an overview of Haskell Server Pages, an extension of Haskell for writing
dynamic web pages. Then we go on to discuss how to implement the runtime
system of this language by using on-request compilation and dynamic loading
of pages into a running server application.

The second part of the thesis concerns security, and in particular language-
based information flow security. We show a calculus, based on λ-calculus with
references, that allows dynamic changes to the flow policies of a program dur-
ing execution. We also give a type system for the calculus that tracks valid
flows, and a semantics. To prove that our type system is sound, we define a
non-interference-like semantic security property and prove that it is implied
by the type system using a bisimulation-style proof. Our aim with the cal-
culus is to provide a core calculus that can be used to explain properties of
other systems. To establish it as such, we also show how to encode various
other similar systems in our calculus.

Keywords: Functional programming, web programming, dynamic load-
ing, regular expressions, security, non-interference, calculus, core calculus,
bisimulation.
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Introduction

Imagine that you want to split a log into smaller pieces to use as firewood.
To your disposal you have an axe and a knife. Modulo inexperience, it will
probably not be very hard for you to chop the log into smaller pieces with the
axe, and then if needed use the knife to split those pieces into even smaller
ones.

Now imagine instead that you want to cut a wooden board in half, to use
on the wall of a house, and you get to use the same axe and knife. Clearly
this time the task won’t be quite as easy, since the tools are not well suited.
It will be doable, hacking and whittling away at the proper place on the
board, possibly trying to mimic a saw with the knife, but it will take a lot
of time and the end result may be somewhat lacking. In particular when
compared to doing the same thing with a real saw.

Even worse, what if you wanted to build that wall, and actually had a
saw at your disposal, but only firewood logs to build the wall from?

Whatever the craft, the key to success is having the right tools and ma-
terials. Skill is important, but it can never fully compensate for the lack of
good materials, or not having the right tools at hand.

Programming language design is the art of supplying the proper tools and
materials to programmers so that they can properly do their craft, writing
programs. And just like with any other craft, what tools you would prefer
to use depends very much on the task at hand. If you want to write a
program that does mathematical computations, a language that provides
floating point numbers and operations on these would be well suited. If your
program is supposed to communicate with a user via text commands, it would
be preferable to use a language that provides text strings and operations
on these. You could probably manage the input and output of strings by
encoding them as numbers and converting these to text when printing them
on the screen, and historically languages have done just that, but in a sense
that would be analogous to building your wall from logs.

R. D. Tennent formulated this general idea in his book Principles of Pro-
gramming Languages [14] as the principle of abstraction, that “values of a
syntactically relevant domain can be given a name”. In other words, if we
want to use text strings, we should call them text strings, and distinguish
them within the language from simple sequences of numbers.

This may all sound completely obvious, but unfortunately not all lan-
guages adhere to this principle of abstraction. Either the abstractions they
supply the programmer with are not particularly well suited for the tasks
within the domains they are intended for, leaving you to build your house
with tools really intended for other tasks. Or they don’t supply anything at
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all for the domain, leaving you like stranded like Robinson Crusoe, trying to
build your house from whatever you can find.

There are really two ways that languages could adhere to the principle
of abstraction. One is quite naturally to equip a language with data types
and operations for the relevant domain as primitives, analogous to putting a
toolbox together that contains just the tools you need for a particular task. A
language specialized in this way to work in a particular niche domain is often
referred to as a domain-specific language. The other way is to equip the lan-
guage with abstraction mechanisms powerful enough to let the programmer
define the proper operations and types himself. By stretching the analogy
a bit, we could see this as having a set of tool parts that could be pieced
together in various ways to form different tools depending on what is needed
at the time. Such languages are referred to general-purpose languages. How-
ever, it may be tedious to piece the parts together to form the proper tools
for a particular complex task. Thus if a general-purpose language is to be
used to write programs within a particular domain, language design can also
be to define the proper types and operations within that general-purpose
language as a library, to relieve the programmer of that burden. A language
created in this way is called an embedded domain-specific language, since the
special-purpose language is embedded inside the general-purpose one.

In particular within the areas of web programming and security, the lan-
guages commonly used all have serious design short-comings. We will discuss
each of these areas in turn, showing what the flaws of the common languages
are and what is being done to address them, by us and by others.

Web programming Long gone are the days when the World Wide Web
consisted mostly of static HTML pages, shown to web users when requested.
Today most web sites consist not of pages, but of programs that generate
pages when they are requested. This means that the same location may show
a different page depending on for instance client input or the contents of a
database. Such programs that generate pages on request are often referred
to as dynamic web pages, and web programming is the task of writing such
pages.

As the use of dynamic web pages has increased, so too has the need for
better tools to use when creating them. The Common Gateway Interface
(CGI) [2] is used by web servers to allow dynamic web pages written in any
language, as long as they produce output on a particular format. This means
that any general-purpose programming language can be used for web pro-
gramming, and for many such languages there exist libraries to help web
programmers do this in an easier way. Some of the languages most com-
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monly used like this are Perl, Python and C. However, far more common
than using CGI for dynamic web pages is to use a domain-specific scripting
language such as PHP, ASP or ASP.NET [3, 6, 1]. These are all designed
with web programming in mind, and come with built-in support for many of
the specifics that dynamic web pages need.

However, most if not all of these commonly used languages, general-
purpose and domain-specific alike, share a fundamental flaw – they model
the page output as raw text! This severely violates the principle of abstrac-
tion, since we cannot distinguish the HTML or XML data that makes up
a document from a simple string of characters. This means, among other
things, that we can never be quite sure that the output of such a page is
really HTML data that we can read from a web browser. It is fully possible
for a web programmer to write a program that outputs an ill-formed result
page that will look like nothing at all to a web browser.

It is widely recognized [4, 7, 9, 10, 16] that the functional programming
idiom is particularly well suited for creating and manipulating XML and
HTML documents. This is because functional languages support algebraic
datatypes, an abstraction mechanism that can be used to represent HTML
or XML data in an easy, non-text-based way that can give well-formedness
guarantees for the resulting pages. A good deal of libraries exist [5, 8, 15,
16] that assist in writing CGI programs in functional languages, forming
embedded domain-specific languages that do not suffer from the text-based
output representation.

Unfortunately CGI programs suffer from some drawbacks. They are in-
herently stateless since one request of a CGI page causes one execution of
the corresponding CGI program. Also, writing CGI programs requires at
least some non-trivial knowledge of the host language, even when adding
very simple dynamic contents, e.g. an access counter. Suddenly a web page
is a program, and coming from a background of writing HTML web sites this
could be quite a leap. Such a steep initial learning curve means many aspir-
ing web programmers with no previous programming experience, but with
experience in creating static HTML pages, will instead choose one of the spe-
cialized scripting languages that allow a much simpler transition from static
XHTML to dynamic pages. Indeed, this is probably one of the most promi-
nent reasons why specialized scripting languages, and PHP in particular, are
so popular today.

In our paper “Haskell Server Pages through Dynamic Loading”, starting
on page 49, we discuss how to get the best of both worlds. We extend
the functional general-purpose language Haskell with syntactic and runtime
support for it to act as a specialized scripting language, called Haskell Server
Pages (HSP), that models XML not as text but as an algebraic datatype. In
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particular we focus in the paper on the runtime aspects of the language, i.e.
how to run a dynamic web page written in HSP. We do this by compiling
pages on the first request, and dynamically loading the compiled code into a
running server application that provides the pages with a useful environment.

This paper was first published in the Proceedings of the ACM SIGPLAN
2005 Haskell Workshop, Haskell ’05, ACM Press, 2005.

Our other paper in the web area, “Regular Expression Patterns”, start-
ing on page 15, written together with Andreas Farre and Josef Svenningsson,
discusses one particular aspect of extending Haskell towards a specialized
scripting language. When pattern matching on the tree structure of XML,
ordinary pattern matching is not powerful enough, you need the full expres-
sional power of regular expressions. In the paper we show how to extend the
normal pattern matching facility of Haskell with regular expression match-
ing. We discuss the design of syntax and semantics, and show a lightweight
implementation as a preprocessor to vanilla Haskell.

This paper was first published in the Proceedings of the ninth ACM SIG-
PLAN International Conference on Functional Programming, ICFP ’04, Vol-
ume 39 Issue 9, ACM Press, 2004.

Security We can talk about web programming, but security programming
is a rather odd term – there really is no such thing as a security program, the
way we would talk about a web program. There are programs where security
is an important aspect, but the main functionality lies almost certainly within
some other domain.

For this reason it is a bit tricky to design a language that takes security
into account. It is hard to do it as a domain-specific language, since security
is not a domain per se. Rather it needs to be a complement to any other
language in which we intend to write security critical applications. If we are
designing a specialized language for a domain, we need to ensure that any
security aspects of that domain are taken into account. If we want to write
security critical applications in a general-purpose language, we would need
that language to support some notion of security.

When we talk about security we mean security of data. Some aspects of
data security are information flow, i.e. tracking where data flows in a program
to ensure that it doesn’t end up where it shouldn’t be, and data integrity, i.e.
making sure that no untrusted data ends up in places where it could affect
the behavior of a program.

For any program with security constraints, one could imagine a solution
based on runtime checks that works for any domain. For every security
critical operation in the program, we insert a check to see whether that
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operation is allowed, and if it isn’t we halt the program with an error, throw
an exception, or something similar. There are problems with this simple
approach however. One is that it might not be obvious to the programmer
where the checks should be inserted, which could lead to unintended leaks
due to missing checks. Another is that using such a check can in itself leak
information, since knowing whether or not the program halted can tell us
something about the values it was trying to operate on.

However, the most crucial problem with this approach is that runtime
checks can only ever detect the presence of a flow, never the absence of one.
This can give rise to so called indirect leaks, where observing the value of
some public data can give away what the value of some secret is. In fact, it is
impossible to discover indirect leaks dynamically, it must be done statically
e.g. through static analysis of the code.

The term normally used for when a program does not leak anything is
end-to-end security. Somewhat simplified, we think of a program as having
various public and secret inputs, and producing various public and secret
outputs. The program is end-to-end secure if the values of secret inputs do
not influence the values of public outputs in any way. The secrecy of those
values is preserved from one end of the program to the other.

Today, no mainstream programming language directly supports end-to-
end security. Programmers are left on their own, and any security guarantees
that they want to place on programs must be asserted through other means,
e.g. program analysis. Many languages may seem to support security at
a first glance, e.g. through mechanisms for access control, but as we have
argued, dynamic solutions can never provide full end-to-end security.

There is however a lot of ongoing research in this area, and one approach
that many find interesting is the idea of security-typed languages, i.e. lan-
guages where the security aspects of programs are tracked by the type system
at compile time. Doing the checks at compile time instead of using runtime
checks means that there will be no leaks through the checks themselves, and
that indirect leaks can be caught. Also the security typing would stop a pro-
grammer from writing programs that contain unintentional leaks, by pointing
out any leaks that could arise.

One particularly tricky problem within this area, that has attracted a lot
of attention lately, is how to design a security type system that allows the
programmer to intentionally leak information. This is generally referred to
as declassification, i.e. making data non-classified, and is very often needed
in real applications that deal with security, e.g. releasing some information to
a customer after payment has been made. Sabelfeld and Sands have written
a survey paper that gives an overview of the research in this particular area
[12].
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Two full-scale security-typed languages exist today as research products
– FlowCaml [13], an extension of OCaml that deals with security typing, and
JIF (Java Information Flow) [11], a similar extension for Java. FlowCaml
has a very rigorous theoretical background, but lacks mechanisms for declas-
sification. JIF on the other hand supports declassification, but the theory
behind it is less well investigated.

In our paper “Flow Locks: Towards a Core Calculus for Dynamic De-
pendencies”, written together with David Sands, we define a calculus with
a security type system that allows information flow policies in a program to
vary during execution, thereby enabling (among other things) declassifica-
tion. We intend this as a core calculus, i.e. a calculus that can be used as
a foundation for other systems, and that can thus help explain how those
other systems work. We give the calculus, its semantics and type system,
and prove that the type system gives the expected security guarantees. We
also give a brief overview of other systems and how these could be encoded
in, and thus explained by, our calculus.

This paper is an extended version of the paper that was published in the
Proceedings of the 15th European Symposium on Programming, ESOP 2006,
LNCS 3924, Springer-Verlag, 2006.
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Regular Expression Patterns

Niklas Broberg Andreas Farre Josef Svenningsson

Abstract

We extend Haskell with regular expression patterns. Regular ex-
pression patterns provide means for matching and extracting data
which goes well beyond ordinary pattern matching as found in Haskell.
It has proven useful for string manipulation and for processing struc-
tured data such as XML. Regular expression patterns can be used
with arbitrary lists, and work seamlessly together with ordinary pat-
tern matching in Haskell.

Our extension is lightweight, it is little more than syntactic sugar.
We present a semantics and a type system, and show how to implement
it as a preprocessor to Haskell.

1 Introduction

Pattern matching as found in many functional languages is a nice feature.
It allows for clear and succint definitions of functions by cases and works
very naturally together with algebraic data types. But sometimes ordinary
pattern matching is not enough. A distinct feature of this form of pattern
matching is that it only examines the outermost constructors of a data type.
While this allows for efficient implementations it is also a rather limited
construct for analysing and retrieving data.

A well-known example of a construct that provides deeper and more com-
plex retrievals are regular expressions for strings. While this is not a very
common feature among programming languages it is one of the key constructs
that have made Perl so popular. Regular expressions are ideal for various
forms of string manipulation, text extraction etc, however, they remain a
very domain specific and ad-hoc construct targeted only for one particular
data structure, namely strings.

On another axis we find the recent trend in XML centric languages. The
first attempts at such languages used the ordinary pattern matching facility
of functional languages to analyze XML fragments [13]. This was found to be
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too restrictive, so in order to be able to express more sophisticated patterns
and transformations on XML fragments the notion of regular expression pat-
terns were invented. Examples of languages including this feature are XDuce
[7] and CDuce [2]. While this is a great boost for the XML programmer, in
the case of XDuce it only works for XML data and not for any other data.
Furthermore those pattern matching constructs are closely tied to rather
sophisticated type systems which makes them somewhat heavyweight.

In this paper we extend Haskell with regular expression patterns. Our
extension has the following advantages:

• Our proposal is lightweight. It is hardly more than syntactic sugar.
Most notably it does not require any complex additions to the type
system.

• It works for arbitrary lists. It is a general construct and not tied to a
specific data type for elements. But it should be noted that it works in
particular for strings since strings are just lists of characters in Haskell.

• It fits seamlessly with the ordinary pattern matching facility found in
Haskell.

In this paper we give a detailed semantics and type system of regular
expression patterns. The extension has been implemented as a preprocessor
to Haskell, and we sketch the implementation

While we have chosen to focus on Haskell in this paper there are very
little Haskell specific details. We are quite confident that our proposal could
be adapted to any similar functional language.

In recent years a number of papers have been devoted to developing ef-
ficient pattern matching and efficient regular matching [5, 6, 9]. This is not
the concern of this paper. Although efficiency is an important consideration
we focus only on language design.

Another issue that we do not address is the question of overlapping and
exhaustive patterns. We are confident that the existing techniques developed
for XML centric languages will do the job nicely [8]. Note also that in general
it is undecidable to check whether patterns are overlapping or non-exhaustive
in Haskell because of guards, so in our setting it is something of a non-issue.
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2 Regular expression patterns by example

2.1 Ordinary pattern matching

Assume that we have the following datatype representing an entry in an
address book.

data Contact = Person Name [ContactMode]

data ContactMode = Tel TelNr

We can assume that the types Name and TelNr are type synonyms for String.
The reason for not inlining TelNr in Contact is because we will later want
to add other means of contact, e.g. email addresses, to our address book.

Now consider two different functions that extract information from a con-
tact; firstTel will return the first TelNr in the list of contact modes asso-
ciated with a contact. lastTel will analogously return the last associated
TelNr. The first is easy to write using simple pattern matching on a contact:

firstTel :: Contact -> TelNr

firstTel (Person _ (Tel nr : _)) = nr

firstTel (Person _ []) = error "No Tel"

The second function, although its functionality is very similar to firstTel,
cannot be written in the same simple way. We must instead resort to re-
cursion and an auxiliary function to step through the list until we reach the
end.

lastTel :: Contact -> TelNr

lastTel (Person _ nrs) = aux nrs

where aux [] = error "No Tel"

aux [Tel nr] = nr

aux (_:nrs) = aux nrs

Although the two functions have very similar functionality, only one of them
can be written using direct pattern matching. Why is this so? The answer
lies, of course, in the list datatype. A (non-empty) list has a head and a tail,
so extracting the first element is easy. To get to the last element however,
we must recursively look at the tail for its last element. In other words, we
must first match on the structure of the list, before being able to look at the
elements.

Haskell has a construct for matching directly on the elements of a list, but
only for fixed-size lists. If we know that a contact never has more than three
phone numbers, we could write lastTel as (we will ignore the erroneous case
from now on)
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lastTel (Person _ [Tel nr]) = nr

lastTel (Person _ [_, Tel nr] = nr

lastTel (Person _ [_, _, Tel nr] = nr

Clearly this is not a very good solution. Even for this very small task we
must write far more than we are comfortable with, and for larger lists or more
complex datatypes this approach quickly becomes infeasible. What we need
is a way of saying ”match a list containing a Tel, preceded by any number of
other elements”. This is where regular expression patterns enter the picture.

2.2 Regular expression patterns

Mathematically a regular expression defines a regular language, where lan-
guage in this context means a (possibly infinite) set of words, and each word
is a sequence of elements taken from some alphabet. We can use a regu-
lar expression as a validator and try to match an arbitrary word against it
to find out if the word belongs to that regular language or not. The basic
regular expression operators are repetition, concatenation and choice. Con-
catenation is straight-forward, ab means a followed by b. Choice (a|b) means
either a or b. Repetition a∗ means zero or more occurrences of a. Repetition
can be defined using choice and recursion as a∗ = ε|aa∗ where ε denotes the
empty sequence. As an example, consider the regular expression e = a ∗ |b∗.
The language defined by e, denoted L(e), is the set of all words consisting
of only a’s or only b’s, including the empty word. We have that aa ∈ L(e),
bbb ∈ L(e), but ab /∈ L(e). In other words, aa and bbb both match the regular
expression e, but ab doesn’t.

This notion of treating a regular expression as a validator is very similar to
the concept of pattern matching in Haskell. We take a Haskell value (a word)
and a pattern (a regular expression) and try to match them, getting a yes or
no as the result. Combining these two concepts is straight-forward, yielding
what we call regular expression patterns. As noted, a regular expression can
be matched against a sequence of elements from some alphabet. Lifting this
idea into Haskell, a regular expression pattern can be matched against a list
of elements of some datatype. When we speak of a sequence, we mean a
sequence of elements in the abstract sense. In contrast, when we speak of a
list, we mean the list datatype that is used to encode sequences in Haskell.

Returning to our lastTel function, we can now easily write it with a
single pattern match by using a repetition regular expression pattern:

lastTel (Person _ [_*, Tel nr]) = nr

We write concatenation using commas as with ordinary Haskell lists, and we
denote repetition with *. As we can see from the example, regular expression
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patterns are actually more flexible than bare regular expressions. A regular
expression is built from elements of some alphabet, the same alphabet that
the words it may match are built from. A regular expression pattern on the
other hand is built from patterns over elements of some datatype, allowing
us to use constructs like wildcards and pattern variables. We use the term
regular expression pattern both for the subpatterns (repetition, choice etc)
and for a top-level list pattern that contains the former. It should be clear
from the context which we are referring to.

2.3 Repetition and Ambiguities

Let us see what else we can do with regular expression patterns. First, as
promised, we extend our datatype with email addresses.

data Contact = Person Name [ContactMode]

data ContactMode = Tel TelNr | Email EAddr

If we only have ordinary pattern matching we cannot even write firstTel

without resorting to recursion and auxiliary functions.

firstTel (Person _ cmodes) = aux cmodes

where aux (Tel nr : _) = nr

aux (_ : cmodes) = aux cmodes

Using a regular expression pattern, we can write it in one go:

firstTel (Person _ [(Email _)*, Tel nr, _*]) = nr

The straight-forward intuition of the pattern above is that the first Tel in
the list is preceded by zero or more Emails (but no Tels), and any number
of other elements may follow it. We can easily write lastTel in a similar
way as

lastTel (Person _ [_*, Tel nr, (Email _)*]) = nr

But seeing these two definitions leads to an interesting question: What hap-
pens if we write the function

someTel :: Contact -> TelNr

someTel (Person _ [_*, Tel nr, _*]) = nr

i.e. where the Tel in question may both be preceded and succeeded by other
Tels? Clearly this pattern is ambiguous, since if we match it to e.g. Person
"Niklas" [Tel 12345, Tel 23456, Tel 34567] we can derive a match for
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either of the three TelNrs to be bound to nr, by letting the first * match
either 0, 1 or 2 Tels. To disambiguate such issues, we adopt the policy that
a repetition pattern will always match as few elements as possible while still
letting the whole pattern match the given list. In standard terminology, our
repetition regular patterns are non-greedy. This policy means that someTel
above will be exactly the same as our firstTel function, since the first *

will now try to match as few elements as possible.
In some cases though, such as lastTel, we want the greedy behavior.

To this end we let the programmer specify if a repetition pattern should
be greedy by adding an exclamation mark (!) to it, e.g. in the following
definition of lastTel:

lastTel (Person [_*!, Tel nr, _*]) = nr

2.4 Choice patterns

Now that we’ve seen the power of repetition patterns, we turn our attention
to choice patterns. Assume that we want a function allTels that returns
a list of all telephone numbers associated with a contact. Without regular
expression patterns we must once more resort to recursion and auxiliary
functions.

allTels :: Contact -> [TelNr]

allTels (Person _ cmodes) = aux cmodes

where aux [] = []

aux (Tel nr : cmodes)

= nr : aux cmodes

aux (_ : cmodes) = aux cmodes

Using a combination of repetition and choice, we can write it as

allTels (Person _ [ (Tel nr | _)* ]) = nr

The intuition here is that each element in the list of contact modes is either
a Tel or something else ( ). Every time that we encounter a Tel, we should
include the associated TelNr in the result. As the example shows we can
achieve this accumulation of TelNrs with a single pattern variable. Since
the intuition of a repetition pattern is that its subpattern, i.e. the pattern
it encloses, should be matched zero or more times, the same must be true
for any pattern variables inside such a pattern. For each repetition, such a
variable will match a new value. Clearly the only sensible thing to do is to
let that variable bind to a list of all those matched values.
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This treatment of variables breaks one aspect of Haskell’s linearity prop-
erty – that the occurrence of a variable in a pattern will bind that variable
to exactly one value of the type that it matches. We will therefore call such
a variable non-linear. A non-linear variable will be bound to a list of values
that it matches, in the order that they were matched (i.e. the order in which
they appeared in the matched list). When we speak of a non-linear binding,
we mean a binding of a non-linear variable to a list of values. We will also
use the terms non-linear context to mean a context in which linear variables
cannot appear, and non-linear patterns, by which we mean patterns whose
subpatterns will always be matched in a non-linear context.

By the example above we see that a repetition pattern is a non-linear pat-
tern, and consequently that the variable nr appears in a non-linear context.
Similarly a choice pattern is also non-linear. If we remove the repetition from
the regular expression pattern in allTels we get the pattern [Tel nr| ] for
matching a list of exactly one element. If that element is a Tel we will have a
value to bind to nr, but if it is an Email we have none! Thus we still cannot
guarantee that a variable gets one value; in this case nr will be bound to a
list with zero or one element.

The function allTels shows how regular expression patterns can be used
for filtering a list based on pattern matching. We can go one step further
and do partitioning, e.g.

allTelsAndEmails :: Contact -> ([TelNr],[EAddr])

allTelsAndEmails (Person _

[(Tel nr | Email eaddr)* ]) = (nr, eaddr)

A choice pattern can also be ambiguous if any of its subpatterns overlap, as
in

sillyAllTels :: Contact -> ([TelNr],[TelNr])

sillyAllTels (Person _ [ (Tel nr | Tel mr | _)* ])

= (nr, mr)

To disambiguate this we adopt a first-match policy, much like that of Haskell
pattern matching. Thus we first check if the first subpattern matches, and
consider the k:th subpattern only if no pattern i < k matches. Note that
we allow choice patterns to contain more than two subpatterns. Choice
patterns are right associative so for example [ (Tel nr | Tel mr | )* ]

is parenthesised like [ (Tel nr | (Tel mr | ))* ]. Another interesting
thing about choice patterns is that we allow a variable to appear in both
subpatterns assuming that it binds to values of the same type. For instance,
if our datatype for modes of contact was defined as
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data ContactMode = Home TelNr | Work TelNr

we could define allTels as

allTels (Person _ [(Home nr | Work nr)*]) = nr

Variables in choice patterns are still non-linear even if they appear in all
subpatterns, so the function

singleTel (Person _ [(Home nr | Work nr)]) = nr

will have the type Contact -> [TelNr].

2.5 Subsequences and option patterns

Regular expressions allow grouping of elements and subexpressions using
parentheses. For example, the regular expression e = (ba)∗ will match the
words ba, baba etc. To add this feature to our regular expression patterns
we need to introduce some new syntax, since using ordinary parentheses in
Haskell will denote tuples, as in

wrongEveryOther [(_,b)*] = b

We (somewhat arbitrarily) choose to denote subsequences with (/ and /),
so a correct function that picks out every other element from a list can be
written as

everyOther :: [a] -> [a]

everyOther [(/_, b/)*] = b

There’s a problem with the above definition though; it works for lists of even
length only. Surely we want everyOther to work for any list. To achieve
this we could add another declaration to the one above like

everyOther [(/_, b/)*, _] = b

to catch the cases where the list is of odd length too. But couldn’t we write
these two cases as a single pattern? Indeed we can, using a choice pattern

everyOther [(/_, b/)*, ((/ /) | _)]

where (/ /) denotes the empty subsequence, ε. However, this pattern is
so common that regular expressions define a separate operator, ?, to denote
optional regular expressions. The definition of ? is e? = e|ε, and by lifting
this to regular expression patterns we can write everyOther more compactly
as
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everyOther [(/_, b/)*, _?] = b

Obviously, optional patterns are non-linear since they can be defined in terms
of choice patterns which are non-linear. Just as for a repetition pattern, an
optional pattern is non-greedy by default. We also define greedy optional
patterns by ?! in analogy with greedy repetition patterns.

2.6 Non-empty repetition patterns

There is one more operator to discuss, namely + that is used to denote non-
empty repetition. For instance we might require all contacts to have at least
one mode of contact registered, either a telephone number or an email, other-
wise it is an error. To enforce this we may want to define allTelsAndEmails
from above as

allTelsAndEmails

(Person _ [(Tel nr | Email eaddr)

,(Tel nrs | Email eaddrs)*])

= (nr ++ nrs, eaddr ++ eaddrs)

Using + we can define this more compactly as

allTelsAndEmails (Person _ [(Tel nr | Email eaddr)+])

= (nr, eaddr)

Modulo variables bound, p+ ≡ pp∗. It is non-linear and non-greedy just like
*, and there is a greedy counterpart +!.

2.7 Variable bindings and their types

Since we can use any Haskell pattern inside regular expression patterns, we
can in particular use pattern variables to extract values from the list that
we match against, as we have seen in various examples already. Haskell also
defines a way to explicitly bind values to a variable using the @ operator.
E.g. in the declaration

allCModes :: Contact -> [ContactMode]

allCModes (Person _ all@[(Tel _ | Email _)+]) = all

the variable all will be bound to the (non-empty) list of ContactModes
associated with a contact. This is a very useful feature to have for regular
expression patterns as well, for instance we may want to write a function
that picks the first two elements from a list as
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twoFirst :: [a] -> [a]

twoFirst [a@(/_, _/), _*] = a

However, adding this feature raises some interesting questions. Firstly, what
will the type of a variable bound to a regular expression pattern be? For a
subsequence it seems fairly obvious that it will have a list type, but what
about repetitions, choices and optional patterns? To this issue there is no ob-
vious right answer, one way might be to let a variable be bound to all elements
matched by the subpattern in analogy with implicitly bound variables. We
have chosen a slightly different approach in which we assign different types
to patterns to mirror the intuition behind them.

Subsequences and repetition patterns will both have list types since they
represent sequences. There’s a difference between them though; a subse-
quence is just what the name implies, a subsection of the original sequence.
Thus a variable bound to it will always have the same type as the input list,
i.e. a list of elements. A repetition pattern on the other hand is a repetition
of some subpattern, and so it will have the type of a list of that subpattern.
For choice patterns we make use of Haskell’s built-in Either type defined as

data Either a b = Left a | Right b

By using this type we can allow the left and right subpatterns of a choice
pattern to have different types, for instance

singleCMode :: [ContactMode]

-> Either ContactMode ContactMode

singleCMode [a@(Tel _ | Email _)] = a

maybeSingleTel :: [ContactMode]

-> Either ContactMode [ContactMode]

maybeSingleTel [a@(Tel _ | _*)] = a

Similarly for optional patterns we use another built-in Haskell type:

data Maybe a = Nothing | Just a

so if we write a function

singleOrNoTel [(Email _)*,a@(Tel _)?,(Email _)*] = a

it will have the type [ContactMode] -> Maybe ContactMode.
One way to think about this is to see the regular expression pattern

operators as special data constructors. In an analogy with ordinary Haskell,
we don’t expect a to have the same type in the two uses a@(Just ) and
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(Just a@ ). Nor do we expect the a in a@( ?) to have the same type as the
a in (a@ )?.

The second issue concerns linear vs. non-linear binding. We have already
seen that implicit bindings, i.e bindings that arise from the use of ordinary
pattern variables, are context dependent; in linear context they get the or-
dinary types, whereas in non-linear context they get list types. This context
dependence unfortunately makes it easy for the programmer to make mis-
takes, since it isn’t clear just by looking at a variable in the pattern what
type it will have. We cannot do anything about implicit bindings, but we can
avoid the same problem for explicit binding. Therefore we let the ordinary
@ operator signify linear explicit binding, the only kind available in ordinary
Haskell. For non-linear explicit binding we introduce a new operator @: (read
”as cons” or ”accumulating as”). The former may not appear in non-linear
context, whereas the latter may appear anywhere inside a regular expression
pattern. Their differences are shown by the following examples:

[a@(Tel _) , _*] => a :: ContactMode

[a@(Tel _)* , _*] => a :: [ContactMode]

[(Tel a@_) , _*] => a :: TelNr

[(Tel a@_)* , _*] => Not allowed!

[(Tel a@:_)*, _*] => a :: [TelNr]

We can define the semantics of implicit bindings in terms of explicit bind-
ings. In linear context we have that a pattern variable a is equivalent to
the pattern a@ . This can be seen in the example [(Tel a), *] which is
clearly equivalent to [(Tel a@ ), *]. In non-linear context, a is equivalent
to a@: , as in the examples [(Tel a)*, *] and [(Tel a@: )*, *].

2.8 Further examples

Now that we’ve seen all the basic building blocks that our regular expression
patterns consist of, let us put them to some real use.

Traditionally regular expressions have been used in programming lan-
guages for text matching purposes, and certainly our regular expression pat-
terns are well suited for this task. As an example, assume we have a speci-
fication of a simple options file. An option has a name and a value, written
on a single row, where name and value are separated with a colon and a
whitespace. Different options are written on different lines. Here are the
contents of a sample options file:
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author: Niklas Broberg

author: Andreas Farre

author: Josef Svenningsson

title: Regular Expression Patterns

submitted: ICFP 2004

A simple parser for such option files can be written using a regular expression
pattern as

parseOptionFile :: String -> [(String,String)]

parseOptionFile

[(/ names@:_*, ’:’, ’ ’, vals@:_*, ’\n’ /)*]

= zip names vals

where zip is a function that takes two lists and groups the elements pair-wise.
XML processing is another area that greatly benefits from regular ex-

pressions, since ”proper pattern matching on XML fragments requires ...
matching of regular expressions” [14]. Indeed several recent XML-centric
languages (XDuce, CDuce) include regular expressions as part of their pat-
tern matching facilities.

As an example we encode XML in Haskell using a simple datatype

data XML = Tag String [XML]

| PCDATA String

An XML fragment is either a Tag, e.g. <P> ... </P>, which has a name
(a String) and a list of XML children, or it is PCDATA (XML lingo for a string
inside tags). This model is of course extremely simplified, we’ve left out
anything that will not directly add anything to our example, most notably
XML attributes. Now assume that we have a simple XML email format,
where a sample email message in this format might look like:

<MSG>

<FROM>d00nibro@dtek.chalmers.se</FROM>

<RCPTS>

<TO>d00farre@dtek.chalmers.se</TO>

<TO>josefs@cs.chalmers.se</TO>

</RCPTS>

<SUBJECT>Regular Expression Patterns</SUBJECT>

<BODY>

<P>Regular expression patterns are useful</P>

</BODY>

</MSG>
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which would be encoded in our XML datatype as

Tag "MSG" [

Tag "FROM" [PCDATA "d00nibro@dtek.chalmers.se"],

Tag "RCPTS" [

Tag "TO" [PCDATA "d00farre@dtek.chalmers.se"],

Tag "TO" [PCDATA "josefs@cs.chalmers.se"]

],

Tag "SUBJECT"

[PCDATA "Regular Expression Patterns"],

Tag "BODY" [

Tag "P"

[PCDATA "Regular expression patterns are useful"]

]

]

We can write a function to convert messages from this XML format into the
standard RFC822 format using regular expression patterns:

xmlToRfc822 :: XML -> String

xmlToRfc822

(Tag "MSG" [

Tag "FROM" [PCDATA from],

Tag "RCPTS" [

(Tag "TO" [PCDATA tos])+

],

Tag "SUBJECT" [PCDATA subject],

Tag "BODY" [

(Tag "P" [PCDATA paras])*

]

]) = concat

["From: ", from, crlf,

"To: ", concat (intersperse ", " tos),

crlf,

"Subject: ", subject, crlf, crlf,

concat (intersperse crlf paras), crlf]

where crlf = "\r\n"

3 Syntax

The previous section has gone over all of regular expression patterns by
example. This section starts the formal treatment by giving a grammar for
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the syntax, which can be seen in figure 1. We refer to the nonterminal for
Haskell’s ordinary patterns as pattern and extend it with a new production
for regular expression patterns.

pattern → . . .
| ’[’ regpat1 . . . regpatn ’]’

regpat → pattern
| regpat ’*’[’ !’]
| regpat ’+’[’ !’]
| regpat ’?’[’ !’]
| regpat ‘ | ‘ regpat
| ’(/’ regpat1 . . . regpatn ’/)’
| ’(’ regpat ’)’
| var ’@’ regpat
| var ’@:’ regpat

Figure 1: Regular expression pattern syntax

The concrete syntax is quite close to that of e.g. Perl [15] or CDuce [2]
with the notable exception that we have non-greedy patterns as default. An
extra exclamation mark indicates greediness.

Ordinary Haskell patterns are regular expressions patterns. The opera-
tors are repetition (*), non-empty repetition (+) and option (?). Furthermore
there are choice patterns indicated by a vertical bar and subsequences are en-
closed in subsequence brackets. Regular expression patterns can be enclosed
in parenthesis. The last two productions are for linear and non-linear vari-
able bindings. Precendence of the operators is as follows: *, +, ?, *!, +! and
?! binds strongest. They are followed by choice patterns which are also right
associative. Lastly we have @ and @: which bind weakest. All constructs in
regular expression patterns bind stronger than constructor application.

4 Semantics

In this section we turn to the formal semantics for regular expression patterns.
Our semantics divides natually into two parts; one for linear and one for
non-linear patterns. The reason for this division is that variable bindings are
treated differently.
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4.1 Structure of semantics

We give the semantics as an all-match semantics. This leads to possibly
ambiguous matches, the same list can be matched in many different ways.
Since this may affect how variables are bound to their values we need to
disambiguate our rules. We follow the approach taken by Hosoya and Pierce
[7] and introduce an ordering on the rules indicating which rule will have
precedence when several rules can match. The order is given by numbers in
the name of the rules, where lower numbers have higher precedence. Intu-
itively this means that when building the derivation tree for a match, one
must always try to use the rule with the highest precedence first, and choose
the other rule only if choosing the first rule cannot lead to a match.

Before we begin with the semantics we will define some concepts which
will be used in our explanation of the semantics. We will use sets of variable
bindings to map variables to values. A variable binding is denoted x 7→ v.
In repetition patterns we will need to merge sets of variable bindings with
overlapping domains. We use ] to this end and define it as follows:

{x1 7→ v1, . . . , xn 7→ vn} ] {x1 7→ vs1, . . . , xn 7→ vsn} =
{x1 7→ v1 ++vs1, . . . , xn 7→ vn ++vsn}

When giving a semantics for subsequence patterns we will use a type
indexed function flatten to merge lists of values. It is defined as follows:

flattenT (v) = [v]
flatten[τ ]([]) = []
flatten[τ ](v, vs) = flattenτ (v) ++flatten[τ ](vs)
flattenMaybe τ (Nothing) = []
flattenMaybe τ (Just v) = flattenτ (v)
flattenEither τ1τ2(Left v) = flattenτ1(v)
flattenEither τ1τ2(Right v) = flattenτ2(v)

We will refer to the set of bound variables in a pattern p as vars(p).

4.2 Semantics for linear patterns

The semantics for linear regular expression patterns can be found in figure
2. Due to space reasons we only give a few of the rules as we explain below.

The judgement for matching linear patterns is denoted l ∈l p → v; β; l′.
It should read as “l is matched by a pattern p yielding a value v, a set of
variable bindings β, and a remainder list l′ “. l and l′ range over Haskell
lists, where l is the list we wish to match and l′ is a (possibly empty) suffix
of l that wasn’t matched.

First of all we have a rule HM-RegPat that extends Haskell’s pattern
matching semantics, denoted ∈h, with regular expression patterns. It does
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LM-Base
e ∈h π → β

e : l ∈l π → e; β; l

LM-As
l1 ∈l p → v1; β1; l2

l1 ∈l x@p → v1; {x 7→ v1} ∪ β1; l2

LM-AccAs
l1 ∈l p → v1; β1; l2

l1 ∈l x@ : p → v1; {x 7→ [v1]} ∪ β1; l2

LM-Seq
l1 ∈l p1 → v1; β1; l2 . . . ln ∈l pn → vn; βn; lf

l1 ∈l (/p1 . . . pn/) → γ1 ++ . . . ++γn; β1 ∪ · · · ∪ βn; lf

where γi = flattenτ (vi), pi : τ

LM-Star
l1 ∈ p∗ → v, β, l2
l1 ∈l p∗ → v; β, l2

HM-RegPat
l ∈l (/p1 . . . pn/) → l; β; []

l ∈h [p1 . . . pn] → β

Figure 2: Semantics for linear regular expression patterns

so by performing a linear match.

l ∈l (/p1 . . . pn/) → l; β; []

l ∈h [p1 . . . pn] → β

Here we require that the remainder list is empty i.e. that the whole input
list is succesfully matched. This requirement together with the ordering on
the rules determines which derivation must be chosen.

The base rule, LM-Base, is that where the pattern to match is a normal
Haskell pattern. In this case we piggy-back on Haskell’s normal mechanism
for binding variables from patterns.

e ∈h π → β

e : l ∈l π → e; β; l

Apart from ordinary Haskell patterns there are two ways that we can bind
variables to values at toplevel, given by the rules LM-As and LM-AccAs.
The @ operator simply binds the variable to a value, whereas the @: operator
binds the variable to a list containing the value. The behavior of @: clearly
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makes more sense in a non-linear context, where the number of bound values
may vary, but since it is harmless to do so we have chosen to allow it to
appear in linear contexts as well.

For subsequences we simply match each pattern in the sequence in order,
as stated by the rule LM-Seq. The values produced after matching are
concatenated and the resulting disjoint sets of variable bindings are merged.
The value yielded by matching a subsequence should always be a list of
elements, so before we can concatenate the values of the sub-matches we need
to flatten these values to simple lists. Here we need to use the typing relation
on patterns defined in section 5. The typing relation is defined relative to
some base type T that during the actual matching will be instantiated to the
type of the elements in the matching list.

Matching a non-linear pattern in a linear context is identical to matching
it in a non-linear context. This is exemplified by the rule LM-Star. The
rules for the rest of the operators are similar and are left out due to space
restrictions.

4.3 Semantics for non-linear patterns

The relation for matching in a non-linear context, denoted l ∈ p → v; β; l′

(the only difference in syntax is that we drop the subscript on ∈), is similar
to the relation for linear contexts. It differs in two crucial aspects, namely
variable bindings and that we handle non-linear patterns. The rules can be
found in figures 3 and 4, split into two for space reasons.

The base rule M-Base is once again that where the pattern to match
is an ordinary Haskell pattern. Since the matching now takes place in a
non-linear context, the values of variables being bound while matching this
pattern are put into lists instead of just being bound outright. Binding
variables explicitly in a non-linear context can only be done using the @:

(accumulating as) operator that binds its variable argument to a list of the
value matching its pattern argument, as shown in the rule M-AccumAs.

The rule for matching a subsequence, M-Seq, is identical to LM-Seq
except that subpatterns in the sequence are also matched in a non-linear
context.

The rules for a repetition pattern, M-Star1 and M-Star2, give a non-
greedy semantics to the operator by giving the rule for not matching higher
precedence than the rule for actually matching the subpattern. The first
rule simply doesn’t try to match anything, whereas the second rule matches
the given subpattern p once and then recurses to obtain more matches. The
value obtained from matching p is then prepended to the result values of the
recursive second premise. Similarly the values of bound values are prepended
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M-Base
e ∈h π → β

e : l ∈ π → e; σ; l

where σ = {x 7→ [v]| x 7→ v ∈ β}

M-AccAs
l1 ∈ p → v1; β1; l2

l1 ∈ x@:p → v1; {x 7→ [v1]} ∪ β1; l2

M-Seq
l1 ∈ p1 → v1; β1; l2 . . . ln ∈ pn → vn; βn; lf

l1 ∈ (/p1 . . . pn/) → γ1 ++ . . . ++γn; β1 ∪ · · · ∪ βn; lf

where γi = flattenτ (vi), vi :: τ

M-Star1
l ∈ p∗ → []; β; l

where β = {x 7→ []| x ∈ vars(p)}

M-Star2
l1 ∈ p → v1; β1; l2 l2 ∈ p∗ → v2; β2; l3

l1 ∈ p∗ → v1 : v2; β1 ] β2; l3

M-GStar1
l1 ∈ p → v1; β1; l2 l2 ∈ p∗! → v2; β2; l3

l1 ∈ p∗! → v1 : v2; β1 ] β2; l3

M-GStar2
l ∈ p∗! → []; β; l

where β = {x 7→ []| x ∈ vars(p)}

Figure 3: Semantics for non-linear regular expression patterns (i)

to the bindings from the recursive call. To get a greedy semantics in the rules
M-GStar1 and M-GStar2 we simply swap the order of the rules to give
precedence to preforming a match.

The non-empty repetition pattern operator p+ is defined as p+ ≡ pp∗,
similarly its greedy counterpart p+! ≡ pp∗!, and the rules M-Plus and M-
GPlus can easily be derived from these facts.

The rules M-Opt1 and M-Opt2 for optional patterns are very similar
to the rules for repeating patterns, only that no recursion to obtain more
matches is done. The values returned by an optional pattern are of the
Haskell Maybe type for optional values.

For choice regular expression patterns we return values of the Haskell
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M-Plus
l1 ∈ p → v1, β1, l2 l2 ∈ p∗ → v2, β2, l3

l1 ∈ p+ → v1 : v2, β1 ] β2, l3

M-GPlus
l1 ∈ p → v1, β1, l2 l2 ∈ p∗! → v2; β2; l3

l1 ∈ p+! → v1 : v2, β1 ] β2, l3

M-Opt1
l ∈ p? → Nothing, β, l

where β = {x 7→ []| x ∈ vars(p)}

M-Opt2
l1 ∈ p → v1, β1, l2

l1 ∈ p? → (Just v1), β1, l2

M-GOpt1
l1 ∈ p → v1, β1, l2

l1 ∈ p?! → (Just v1), β1, l2

M-GOpt2
l ∈ p?! → Nothing, β, l

where β = {x 7→ []| x ∈ vars(p)}

M-Choice1
l1 ∈ p1 → v1; β; l2

l1 ∈ (p1|p2) → (Left v1); σ; l2

where σ = β ∪ {x 7→ []| x ∈ vars(p2)} \ vars(p1))

M-Choice2
l1 ∈ p2 → v1; β1; l2

l1 ∈ (p1|p2) → (Right v1); β; l2

where β = β1 ∪ {x 7→ []| x ∈ vars(p1)} \ vars(p2))

Figure 4: Semantics for non-linear regular expression patterns (ii)

Either type to indicate which choice was taken. In the rules M-Choice1 and
M-Choice2 we give precedence for matching the left pattern. Furthermore
all variables occuring only in the branch not taken are assigned empty lists.

5 Well-formed regular expression patterns

We now turn our attention to the static semantics of regular expression pat-
terns. We will refer to the static semantics as well-formedness of regular
expression patterns.

There are two reasons why we need a static semantics. The first reason
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concerns where and how a variable is bound in a pattern. In ordinary patterns
a variable may appear only once, with the notable exception for or -patterns
found in Ocaml and SML/NJ. In these languages all alternatives must bind
exactly the same set of variables. We have similar yet more liberal restrictions
on variable bindings. Bound variables must not necessarily be bound in all
alternatives in a choice pattern.

The second reason is that we need to ensure that the types of the bound
variables are correct. The same variable should in particular have the same
type for all its occurrences in a choice pattern.

To express the well-formedness of a regular expression pattern we use the
judgment ∆ `l p which says that a (linear) regular expression pattern p is
well-formed in the typing context ∆. The typing context ∆ gives types to
the variables bound in the pattern. When checking the validity of patterns
in a non-linear context we use the judgment ∆ ` p which is similar to the
judgment for linear patterns. We will also refer to the well-formedness of
patterns in Haskell, using the judgment ∆ `h p. We refer to Faxén’s paper
for a static semantics of Haskell patterns [4]. We require that ∆ `h p can only
be derived if p binds exactly the variables in the typing context ∆. Finally
we will need a notion of types for regular expression patterns. We use the
judgment p :: τ to say that the pattern p has the type τ .

Checking the well-formedness of a regular expression pattern as an or-
dinary pattern in the host language is done using the following rule. Is is
noteworthy that we split the typing context. All the typing contexts ∆i

must bind different names. We use this to enforce that a variable may only
be bound once.

∆1 `l p1 . . . ∆n `l pn

∆1 . . . ∆n `h [p1 . . . pn]
∆i ∩∆j = ∅ ∀ij.i 6= j

The rules for establishing well-formedness of linear patterns can be found in
figure 5. In this section we only present the rules for non-greedy operators as
the rules for greedy counterparts are exactly the same. The only interesting
thing to note about the rules for ∗, + and ? is the fact that when checking
their subpatterns we are in a non-linear context and therefore use the corre-
sponding judgment for the premises. The rule for sequences is reminiscent
of that for regular expression patterns in the context of ordinary patterns
explained above.

The variable binding rules are interesting to contrast against each others.
”As”-patterns are well-formed if the variable is bound to a pattern with the
same type as the variable. ”Accumulating as”-patterns on the other hand
may match several times so the type of the variable must be a list.
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∆ ` p

∆ `l p∗
∆ ` p

∆ `l p+

∆1 ` p ∆2 ` q

∆ `l p|q
∆ = ∆1 ∪∆2

∆ ` p

∆ `l p?

∆1 ` p1 . . . ∆n ` pn

∆1 . . . ∆n `l (/p1 . . . pn/)
∆i ∩∆j = ∅ ∀ij.i 6= j

p :: τ ∆ `l p

∆, x :: τ `l x@p

p :: τ ∆ `l p

∆, x :: [τ ] `l x@:p

∆ `h hpat

∆ `l hpat

Figure 5: Wellformed linear regular expression patterns

∆ ` p

∆ ` p∗
∆ ` p

∆ ` p+

∆1 ` p ∆2 ` q

∆ ` p|q
∆ = ∆1 ∪∆2

∆ ` p

∆ ` p?

∆1 ` p1 . . . ∆n ` pn

∆1 . . . ∆n ` (/p1 . . . pn/)
∆i ∩∆j = ∅ ∀ij.i 6= j

p :: τ ∆ ` p

∆, x :: [τ ] ` x@:p

∆′ `h hpat

∆ ` hpat

where ∆ = {x :: [τ ]|x :: τ ∈ ∆′}

Figure 6: Wellformed regular expression patterns

In figure 6 we present the rules for establishing the well-formedness of non-
linear patterns. Most of the rules carry over straightforwardly from those for
linear patterns. It should be noted though that the rule for ordinary patterns
rebuilds the typing context so that all variables have list types.

Figure 7 gives the typing rules for regular expression patterns. The intu-
ition behind these rules is that a pattern has a type which reflects the ways
it can match. For example a pattern which can match many times has a list
type, hence variables bound to ∗ and + patterns get list types. Choice pat-
terns can match one of two things which is captured by the Either type of
Haskell. A sequence pattern matches yields a sequence and hence it also has
a list type. Variable binding patterns don’t affect the typing. The last typ-
ing rule for ordinary patterns in the underlying language is more surprising,
since it refers to a specific type T. This means that the typing rules should
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p :: τ

p∗ :: [τ ]

p :: τ

p+ :: [τ ]

p :: τ q :: τ ′

p|q :: Either τ τ ′
p :: τ

p? :: Maybe τ

p1 :: τ1 . . . pn :: τn

(/p1 . . . pn/) :: [T ]

p :: τ

x@p :: τ

p :: τ

x@:p :: τ hpat :: T

Figure 7: Typing rules for regular expression patterns

be interpreted in a context where we are matching on a list of type [T], i.e.
T is the type of the elements of the list.

6 Implementation

We currently have an implementation of our regular expression pattern sys-
tem that works as a preprocessor for GHC. It takes a source code file possi-
bly containing regular expression patterns and translates it into semantically
equivalent vanilla Haskell code. It also comes with a matching engine, which
we implement as a simple parser monad. The preprocessor does not check
any types, instead we rely on GHC’s type checker to catch type errors.

6.1 Matching engine

The datatype for a matching parser, which we from now on will refer to as a
matcher, looks like

data Matcher e a = Matcher ([e] -> [(a,[e])])

It is essentially a function that takes an input list, conducts a match, and
returns a list of results. Each result will consist of a value, a set of values for
bound variables, and a remainder list. All of this is read directly from our
semantic rules.

Since different variables will be bound to values of different types, we need
to model the set of bindings as a tuple, with each entry corresponding to the
value(s) for one specific variable. As is customary, we let the remainder list
be the state of the matcher monad, so that it is implicitly threaded through
a series of matches. The individual matcher functions then need to return a
value for future bindings, and a tuple with values for variables.

To account for our all-match semantics the parser generates a list of
results at each step. At places where we need to branch we can use the +++
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operator which lets us proceed with two different matchers. We define +++

as

(+++) :: Matcher e a -> Matcher e a -> Matcher e a

(Matcher f) +++ (Matcher g) =

Matcher (\es -> let aes1 = f es

aes2 = g es

in aes1 ++ aes2)

As we can see from the definition +++ is left-biased, i.e. any results from its
left operand will end up before any results from its right operand in the list
of results. This allows us to define a function that conducts the full matching
by, as defined by our first-match policy, selecting the first result in this list
of results for which the matcher has reached the end of the input list (i.e.
the remainder list is empty). This function, called runMatch, corresponds to
the rule HM-RegPat from figure 2, and is defined as

runMatch :: Match e a -> [e] -> Maybe a

runMatch (Matcher f) es =

let allps = f es

allMatches = filter (null . snd) allps

in case allMatches of

[] -> Nothing

(((_, vars),_):_) -> Just vars

6.2 Translation

The basic idea behind translating a regular expression pattern into vanilla
Haskell is to generate a matcher for each subpattern, all the way down to or-
dinary Haskell patterns, and then combine these to form a top-level matcher
corresponding to the whole of the pattern.

6.2.1 Base patterns

The base case is when the pattern in question is an ordinary Haskell pattern.
First we must generate a function that actually takes an element from the
input list and tries to match it to the given pattern. For example, if the
pattern in question is Tel nr, the corresponding function would look like

match0 :: CMode -> Maybe TelNr

match0 e = case e of

Tel nr -> Just (nr)

_ -> Nothing
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No type signatures are actually generated, we just supply them here to sim-
plify understanding. To avoid overly long signatures we abbreviate ContactMode
with CMode in our examples.

What the function returns if the match succeeds is a tuple containing the
values of bound variables. The function above works in linear context since
we return the bound variable as is. If we instead wanted a function to work
in non-linear context, we would wrap the values in lists, like

match0 :: CMode -> Maybe [TelNr]

match0 e = case e of

Tel nr -> Just ([nr])

_ -> Nothing

We also need to lift a generated matching function into the matcher monad.
This lifting works identically regardless of what the pattern is, so we have a
function in the matcher engine that does this, defined as

baseMatch :: (e -> Maybe a) -> Matcher e (e,a)

baseMatch matcher = do

e <- getElement

case matcher e of

Nothing -> mfail

Just b -> do discard

return (e, b)

The functions used by baseMatch are inherent to our matcher monad. getElement
retreives the head of the input list, discard drops the head of the input list,
and mfail is a matcher that always returns an empty list of results. We
now need to generate a matcher by applying baseMatch to our generated
function, i.e.

match1 :: Matcher CMode (CMode, TelNr)

match1 = baseMatch match0

The type states that match1 is a matcher for a list of CModes. The value
matched is a CMode, and the only variable bound is of type TelNr. The
numbers 0 and 1 in the names of these functions signify that each name is
fresh, i.e. these numbers could be any positive integers, but no two functions
share the same integer.

For Haskell patterns that are guaranteed to always match, i.e. pattern
variables and wildcards ( ), we can simplify these steps. For a wildcard, what
we need to generate is the matcher
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match0 :: Matcher e (e, ())

match0 = baseMatch (\_ -> Just ())

meaning we will always match, and no variables are bound. The only differ-
ence for a pattern variable is that the variable in question is also bound, e.g.
for the pattern a we get

match0 :: Matcher e (e, e)

match0 = baseMatch (\a -> Just (a))

Once again the shown function works in linear context, in non-linear context
we would wrap the returned a in a list.

6.2.2 Repetition

All regular expression patterns have one or more subpatterns, and the first
step when translating a regular expression pattern will be to translate these
subpatterns. For a repetition pattern, p∗, we would first translate the subpat-
tern p into some matcher function matchX. According to the rules M-Star1
and M-Star2, a matcher for a repetition pattern should if possible continue
without trying to match anything, otherwise it should match one element and
then recursively match the repetition pattern again. This behavior is com-
mon to all repetition patterns so we define it as a function in the matching
engine:

manyMatch :: Matcher e a -> Matcher e [a]

manyMatch matcher = (return []) +++

(do a <- matcher

as <- manyMatch matcher

return (a:as))

The problem with this definition is that manyMatch returns a list in which
each element is the result of one step of the recursion. We need to unpack this
list so that we instead return a tuple, in which each entry is a list of results for
a specific variable binding. We cannot do this generically since the number
of bound variables, and thus the size of the tuple, will vary. Therefore we
must supply an appropriate unzipping function that works for the correct
number of variables. The exact function to use can be determined by the
preprocessor, that has the necessary meta-information on what variables are
bound. Note that all variables inside the repetition will be non-linear, so the
result of matching a variable in each step of the recursion will be a list of
values. If we only unzip to get a list of such results for each variable, what
we would really get is a list of lists of values. Thus to get a list of values
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we should also let the unzipping function concatenate the results for each
variable in the resulting tuple.

Inside manyMatch the unpacking will be done in two steps. The first is
to simply unzip the list into two lists, one containing all values (vi from the
rules), the other containing all values of bound variables. In the second step
we need to apply the supplied unzipping-and-concatenating function to the
latter list to get the variable values proper. This new improved manyMatch

will thus look like

manyMatch :: Matcher e (a,b) -> ([b] -> c)

-> Matcher e ([a], c)

manyMatch matcher unzipper = do

res <- mMatch matcher

let (vals, vars) = unzip res

vs = unzipper vars

return (vals, vs)

where mMatch is our old definition of manyMatch.
As an example, we show the translation of the pattern (Tel nr)*. The

first step is to translate the subpattern Tel a, which we have already seen
how to do. The new function that we generate will then look like

match2 :: Matcher CMode ([CMode],[TelNr])

match2 = manyMatch match1 unzip1

assuming the matcher for the subpattern is called match1. The function
unzip1 here is simply the concat function, since there is only one variable
bound. To account for the greedy version of a repetition pattern, *!, we
simply flip the arguments to +++ in manyMatch, which will give a higher
priority to the case when we actually match an element.

Non-empty repetition patterns, +, are very similar to ordinary repetition
patterns, the only difference is of course that we make an initial match before
starting the recursion, as shown in

neManyMatch :: Matcher e (a,b) -> ([b] -> c)

-> Matcher e ([a], c)

neManyMatch matcher unzipper = do

res1 <- matcher

res <- mMatch matcher

let (vals, vars) = unzip (res1:res)

vs = unzipper vars

return (vals, vs)
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6.2.3 Choice and Optional patterns

Choice patterns are slightly trickier to handle because of the way variables are
bound. As we saw in the rules M-Choice1 and M-Choice2, any variables
appearing in the other branch than the one being matched should be bound
to empty lists. This is very difficult to handle generically since we need
access to the meta-information of variable names. Thus we instead generate
the full code for the choice pattern during translation. As an example we
translate the pattern (Tel nr | Email eaddr). We start by translating the
subpatterns, resulting in two functions that we assume are named match1

and match2. The code generated for the choice pattern will be

match3 :: Matcher CMode

(Either CMode CMode, ([TelNr],[EAddr]))

match3 = (do (val, (a)) <- match1

return (Left val, (a, [])))

+++ (do (val, (b)) <- match2

return (Right val, ([], b)))

where we have tagged the result value of the pattern match with the re-
spective constructors from the Either type. The story is very similar for
optional patterns, but this time all variables should be bound to empty lists
if no match is done. For the pattern (Tel nr)? we get

match4 :: Matcher CMode (Maybe CMode, [TelNr])

match4 = (return (Nothing, [])) +++

(do (val, (a)) <- match1

return (Just val, a))

For a greedy optional pattern we would simply switch the arguments to +++,
just as for repetition patterns.

6.2.4 Subsequences

The trickiest pattern to implement is subsequence, due to the need for flat-
tening. As we saw in section 5, flattening is done based on the type of a
subpattern (with respect to some base type for elements in the input list),
which means that the preprocessor must keep track of these types in order to
insert the proper flattening functions. For a pattern (/ (Tel nr)?, (Email

eaddr)* /) we get the following translation, assuming the two subpatterns
are translated into matcher functions match1 and match2 respectively:
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match5 :: Matcher CMode ([CMode], ([TelNr],[EAddr]))

match5 = do (v1, (a)) <- match1

(v2, (b)) <- match2

let v1f = maybe [] (\v -> [v]) v1

v2f = concatMap (\v -> [v]) v2

return (v1f ++ v2f, (a,b))

The value v1 is the result of match1, i.e. the matcher for (Tel nr)?, so it
will have type Maybe CMode. To flatten it we use the built-in Haskell function
maybe that takes two arguments, one that is a default value to return if it
encounters a Nothing (in this case []), the other a function to apply to a
value held by a Just (in this case the flattening function for a value of the
base type). Similarly v2 comes from match2, so its type will be [CMode].
We flatten it using the built-in function concatMap that takes a function,
applies is to all elements of a list, and then concatenates the results.

6.2.5 Variable bindings

Finally we turn to the explicit binding operators. Binding a variable to a
value in our matcher means to add that value to the result tuple. Since an
explicitly bound variable syntactically appears to the left of any variables
in its subpattern, we add the value in the leftmost position in the tuple,
i.e. before those bound in the subpattern. Thus we know that the values
in the result of the top-level matcher should be bound to variables from left
to right in the order they appear in the pattern. As an example consider
the pattern a@(Tel nr | Email eaddr). We first translate the subpattern
(Tel nr | Email eaddr) into a matcher match1. The matcher generated
for the variable binding will then be

match2 :: Matcher CMode (Either CMode CMode,

(Either CMode CMode,[TelNr],[Eaddr]))

match2 = do (val, (nr, eaddr)) <- match1

return (val, (val, nr, eaddr))

If we had instead used non-linear binding, i.e. a@:(Tel nr | Email eaddr),
we would get a list for the returned value, i.e.

match2 :: Matcher CMode

(Either CMode CMode,

([Either CMode CMode],[TelNr],[Eaddr]))

match2 = do (val, (nr, eaddr)) <- match1

return (val, ([val], nr, eaddr))
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6.3 Matching

Now we know how to translate a regular expression pattern into a top-level
matcher function, what is left is to insert and invoke the generated matcher
at the right place to preserve the pattern matching semantics. To this end
we use Haskell pattern guards [3] that allow us to evaluate a function and
pattern match on the result as part of the original pattern match. The
function that we so wish to evaluate is runMatch applied to our generated
top-level matcher and the input list that we wish to match. For our matcher
functions to be in scope we add them to the where clause of the declaration
that the regular expression pattern appears in. To show a complete example
of the translation of a function declaration we revisit our function allTels

defined as

allTels (Person _ [(Tel nr | _)*]) = nr

since it contains several different features of regular expression patterns. The
translated version of this function will look like

allTels (Person _ arg0)

| Just (nr) <- runMatch match5 arg0 = nr

where match0 e = case e of

Tel nr -> Just ([nr])

_ -> Nothing

match1 = baseMatch match0

match2 = baseMatch (\_ -> Just ())

match3 = (do (val, (nr)) <- match1

return (Left val, (nr)))

+++

(do (val, ()) <- match2

return (Right val, ([])))

match4 = manyMatch match3 unzip1

match5 = do (v1, (nr)) <- match4

let v1f = concatMap

(either (\v -> [v])

(\v -> [v]))

v1

return (v1f, (nr))

The functions match0 and match1 together correspond to the pattern (Tel

nr). Note the list around the returned variable nr signaling that the pat-
tern is matched in a non-linear context. match2 corresponds to the pattern
. Combining these two into a choice patterns yields (Tel nr | ), which
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is translated to match3. On top of that we add a repetition, which gives
us match4 when translated. Finally since the top-level pattern should be
matched as a subsequence, as seen in the rule HM-RegPat, we translate
it into match5. The actual matching is done in the pattern guard that ap-
plies runMatch to the matcher and the input list. The latter is held by an
automatically generated fresh variable, in this case arg0. It is also interest-
ing to note that the actual binding of variables to values does not happen
until runMatch is evaluated. Any mention of variable names in the matcher
functions, e.g. nr in match0, are only there as mnemonic aids to a human
reader. We could change all such names to freshly generated variable names
without changing any semantics.

In Haskell, patterns can appear in numerous places such as function decla-
rations, case expressions, let expressions, statements etc. Translating regular
expression patterns into vanilla Haskell is slightly different depending on just
where the pattern appears. The generated matchers will be identical in all
cases, but the placement of them and of the evaluation may differ. We will
not go through these differences in detail, but our implementation handles
all cases correctly. Irrefutable (lazy) patterns also require special care, and
we have yet to implement support for them in full.

7 Related Work

Pattern matching is a well-known and much studied feature of functional
languages [1, 17, 11, 12]. It provides the startingpoint for the work presented
in this paper.

Regular expressions have been used in programming for a long time,
mostly for text matching purposes. Perl’s support for regular expressions
is probably one of the most well-known [15], but most mainstream lan-
guages, including Haskell, have some library support for regular expression
text matching. Regular expressions in such libraries are themselves encoded
as strings. Matching them means taking two strings, where one encodes a
regular expression, and match them to each other. This is in some sense very
low-level when compared to our regular expression patterns since there are
no guarantees that regular expressions encoded as strings are well-formed,
and there is no direct way to bind variables to values during a match. Yet
another drawback is of course that such regular expressions work on strings
only, whereas our regular expression patterns work over lists of any datatype.

The recent trend in XML-centric languages has led to several new lan-
guages with support for regular expression pattern matching such as XM-
Lambda [13], XDuce [7] and CDuce [2]. Most similar to ours is probably
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CDuce, a general purpose XML-centric programming language. The main
focus in this language is its regular expression types which are used to validate
XML documents. Borrowing from XDuce they also have regular expression
patterns which are tightly coupled with the type system. This allows for
very precise type information to be propagated in the right hand side of a
pattern. The main difference with our work is the close connection with the
type system. Our extension is little more than just syntactic sugar which
makes it very easy to implement.

Another recently developed language that features regular expression pat-
terns is Scala [16]. Scala is a multi paradigm language supporting both object
oriented and functional programming. Its regular expression facility is rather
similar to ours but differs at the following points. Firstly, there is only one
variable binding construct which has a context dependent behaviour. Sec-
ondly, Scala has non-greedy operators just as we do but have no greedy
counterparts. This can make some patterns awkward to express. Scala’s
regular expression patterns work for arbitrary sequences.

There has been some work in extending Haskell with the full power of
XDuce, called XHaskell [10]. This work focuses on fitting the type system
of XDuce into Haskell and encoding it using Haskell’s class system. They
also have regular expression patterns but these are intimately coupled with
regular expression types and do not work together with ordinary pattern
matching.

8 Future Work

There are several areas where our regular expression patterns extension can
be improved. It is not obvious that our implementation using a monadic
parser is the most efficient approach, on the contrary. There has been lots of
work on efficient matching of regular expressions and it is likely that some
of these techniques could be used with our system to make it more efficient.

We will need to devise and implement a type checking algorithm for our
regular expression patterns on top of Haskell´s type checking mechanism.
Being able to type check our regular expression patterns before translating
them into vanilla Haskell, as opposed to our current implementation that
first translates and then lets a Haskell type checker do the work, would, if
nothing else, lead to much improved error messages.
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Haskell Server Pages through Dynamic

Loading

Niklas Broberg

Abstract

Haskell Server Pages (HSP) is a domain speci�c language, based on
Haskell, for writing dynamic web pages. Its main features are concrete
XML expressions as �rst class values, pattern-matching on XML, and
a runtime system for evaluating dynamic web pages.

The �rst design of HSP was made by Erik Meijer and Danny van
Velzen in 2000, but it was never fully designed nor implemented. In
this paper we re�ne, extend and improve their design of the language
and describe how to implement HSP using dynamic loading of pages.

1 Introduction

Long gone are the days when the world wide web consisted mostly of static
HTML pages. Today, dynamic web pages, i.e. programs that generate page
contents on demand, are used for a multitude of purposes. They range from
simple access counters to complete business applications built entirely on the
web.

As the use of dynamic web pages has increased, so too has the need
for better tools to use when creating them. To create dynamic web pages,
programmers can use either specialized scripting languages that allow mixing
of XML and code, e.g. PHP [5] or ASP [11], or they can use CGI [2] programs
written in basically any programming or scripting language, but more often
than not in Perl, Python or C.

However, most if not all of the commonly used languages share a common
�aw, and a severe one at that � they model HTML data as raw text. This
violates one of the most fundamental principles of language design, Tennent's
principle of abstraction [21, 19], that says that values of a syntactically rele-
vant domain can be given a name. Clearly, in a language targeted at writing
programs that create HTML documents there should be the notion of an
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HTML type, and built-in support for creating and manipulating HTML val-
ues.

It is widely recognized [6, 12, 16, 17, 25] that the functional program-
ming idiom is particularly well suited for creating and manipulating XML
and HTML documents, and a good deal of libraries exist [9, 15, 23, 25]
that assist in writing CGI programs in functional languages. Unfortunately
CGI programs su�er from some drawbacks. They are inherently stateless
since one request of a CGI page causes one execution of the corresponding
CGI program. Also, writing CGI programs requires at least some non-trivial
knowledge of the host language, even when adding very simple dynamic con-
tents like an access counter. Such a steep initial learning curve means many
aspiring web programmers with no previous programming experience will in-
stead choose one of the specialized scripting languages that allow a simpler
transition from static HTML to dynamic pages.

What we would like is a functional language that supports a stateful pro-
gramming model and the ease of use of specialized scripting languages, while
still retaining its nice XML processing capabilities. Enter Haskell Server
Pages.

In 2000, Erik Meijer and Danny van Velzen presented what they called
Haskell Server Pages (HSP) [17], a domain-speci�c web programming lan-
guage based on the functional general-purpose programming language Haskell.
It improved over its peers by introducing a central XML data datatype, which
guarantees well-formedness of produced pages and leads to a better integra-
tion between XML data and other code. Indeed, XML fragments were just
another form of expressions. Their HSP was intended to work on top of the
Haskell Execution Platform (HEP) [20]. Unfortunately their intended imple-
mentation was stalled together with HEP and was never resumed. In this
paper we pick up the thread left by the original authors. Our contributions
to HSP are threefold:

1. We redesign the implementation of the HSP runtime system, replacing
the dependency on HEP with dynamic loading of object �les based on
hs-plugins [18].

2. We re�ne, improve and extend the original HSP programming model.

3. We provide a few central low-level libraries to support common web
programming tasks, and a framework to make it easy to create more
specialized higher-level libraries on top of this core.

This paper covers 1 and 2, while 3 is covered in the thesis that is the basis
for this paper [7]. The thesis also contains a more thorough explanation of 2
than what we give here.
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The rest of this paper is organized as follows. Section 2 starts by giv-
ing examples of the HSP language itself. Section 3 covers the extensions,
re�nements and improvements that we have made to the HSP language as
presented by Meijer and van Velzen. In section 4 we give an overview of
our implementation, and in section 5 we discuss the current status of that
implementation. Sections 6 and 7 cover related and future work respectively,
and section 8 concludes.

2 Examples

In this section we give an overview of the HSP language and how it di�ers
from ordinary Haskell, to give the reader a feel for the issues we tackle in the
subsequent sections.

2.1 XML meets Haskell

At the core of HSP, that which makes us consider it a language of its own,
is the feature that XML fragments are �rst class values, both syntactically
and semantically.

As a �rst example, we can write a simple paragraph containing the cus-
tomary compulsory text as

helloWorld = <p>Hello World!</p>

There are two interesting things to note with the above declaration. First,
we do not need to use any escape mechanism to leave code context when we
want to write the XML fragment, as we would have had to in PHP or ASP.
This comes for free in HSP since an XML fragment is itself an expression.

The other thing to note is that in HSP all XML fragments are guaranteed
to be well-formed at all times. This means that opening tags must have cor-
responding closing tags. The ill-formed expression in the following de�nition
is thus a syntactic error and will be statically rejected by the HSP parser:

helloWorld = <p>Hello World!</q>

A similar error in PHP or ASP would be accepted without further ado, where
an XML fragment is simply a string.

As we saw in the above example, text inside tags (PCDATA) can be
written just like in XML, without escape notation like that of Haskell string
literals. The tags themselves function as escapes, so anything that comes
between them is assumed to be either text, or another tag as in
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boldHelloWorld = <p><b>Hello World!</b></p>

Instead we must use escapes whenever we want inner content to be computed
by an expression, as in the function

hello name = <p>Hello <% name %>!</p>

where hello takes a name and produces an XML fragment. In summary,
in HSP we need to use escapes to write code inside XML, but not the other
way around. In string-based languages like PHP, we need to do both. This
leads to a nested code structure in HSP re�ecting the hierarchical nature of
XML, i.e. we write code inside XML inside code inside XML ..., as opposed
to the �at structure of PHP.

Not only strings can be embedded inside XML fragments in HSP, but
rather anything that can be represented as part of the XML tree being built.
The most obvious example of such a value is of course another XML fragment,
as an example we can de�ne the page body for our initial example as

helloBody = <body><% helloWorld %></body>

Other examples of embeddable values include numbers, optional (Maybe)
values and lists of embeddable values.

We also want our XML elements to be able to have attributes, so for
example we can de�ne

redHelloWorld :: HSP XML

redHelloWorld =

<p style="color:red">Hello World!</p>

as a somewhat more colorful greeting. All attributes come as name-value
pairs just as in ordinary XML. Like children, attribute values can also be
computed from embedded expressions as in

hwColor :: String -> HSP XML

hwColor c =

<p style=("color:" ++ c)>Hello World!</p>

There is no need to escape embedded expressions for attributes, since in
the static case, e.g. style="color:red", the value can simply be treated as a
Haskell string expression. Again just like for children, we allow a wide range
of types for embedded attribute expressions.

We can also construct and assign attributes programmatically, in which
case we need to use a slightly di�erent syntax. Using the set function that
sets an attribute on an element, we can de�ne
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redHelloWorld =

<p>Hello World!</p>

`set` "style":="color:red"

where the operator := associates an attribute name with a value.
It is also often convenient to be able to pass in complete attributes, i.e.

both name and value, to tags directly. We allow an extra expression di-
rectly inside a (self-contained or opening) tag, denoting a list of additional
attributes for the element in question. As an example, we can de�ne a more
general function for the above as

hwWithAttrs attrs = <p attrs>Hello World!</p>

and de�ne e.g.

hwColor color =

hwWithAttrs

["style":= "color:" ++ color]

All HSP pages must de�ne and export a function page de�ning the con-
tents of the page. It is this function that is called when the page is requested.
To complete our example we can thus de�ne

page = <html>

<head><title>Hello World!</title></head>

<% helloBody %>

</html>

to produce a complete (X)HTML page.

2.2 Pattern matching

Now that we know how to build XML values using concrete XML syntax,
we will have a look at how to take them apart again using pattern matching.
This area was covered only brie�y in the original HSP design, so most of it
is of our own making.

2.2.1 Elements

First of all we can match directly on elements, as in

isImg <img/> = True

isImg _ = False

Our intuitive interpretation of the above is simply that isImg will return True
if it is given an img element, and False otherwise.
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2.2.2 Attributes

For pattern matching on attributes, we �rst need to consider how we want
to use them. First of all, in XML the order of attributes is irrelevant, so for
instance the two elements

<img src="img/myImg.jpg" alt="My image" />

and

<img alt="My image" src="img/myImg.jpg" />

should be equivalent. Second, the far most common reason for pattern match-
ing on attributes is when you want to know the value of a certain attribute,
regardless of (the existence of) other attributes. Therefore we want to model
our system so that these two things are easy to express. In this example

imgSrcAlt <img src=s alt=a/> = Just (s,a)

imgSrcAlt <img/> = Nothing

imgSrcAlt _ = error "Not an image"

we let the �rst case match any img element with the src and alt attributes
set, regardless of their internal order, or whether any other attributes are also
set. The second case will match any img element whatsoever. In e�ect we
treat the attributes of an element as a set, and matches on speci�c attribute
values as lookups into this set.

In some cases we need to know about the full set of attributes, so anal-
ogous to expressions we allow an extra pattern at the end, denoting the
remaining set of attributes. For instance we can write the pattern

<img src=s [] />

that will match any img element with only the src attribute given, while

<img as/>

will bind the whole set (list) of attributes of an img element to the variable
as for subsequent lookups.

2.2.3 Children

Pattern matching on children follows just as easily, as in

getPText <p><% PCDATA t %></p> = t

56



www.manaraa.com

where the pattern inside code escape tags matches exactly one child, in this
case a PCDATA child. We use the word PCDATA here as a marker, denoting
that the matched child should be text and not another element. In truth
PCDATA is a data constructor in the XML datatype that we cover in section
3.1, but the programmer doesn't need to know that in order to use it as a
marker.

Matching a single child is simple enough, but for more complicated ex-
amples we run into trouble. When matching XML, we often want to be
able to say things like "match an arbitrary number of <p> elements", or
"start by matching a <h1> element, followed by one or more occurrences
of a <h2> element and a <p> element in sequence". Clearly, basic Haskell
pattern matching will not be powerful enough for these purposes. More for-
mally, "proper patterns matching on XML fragments requires [...] matching
of regular expressions" [17].

To this end we have developed HaRP (Haskell Regular Patterns), the
system for regular expression patterns in Haskell [8]. Using these regular
expression patterns we can express more powerful patterns, for example to
get all the text of all paragraphs in a page body, we can say

getText :: XML -> [String]

getText <body>[

<p><% PCDATA t %></p>*

]</body> = t

where the * denotes that they may be zero or more p elements enclosed inside
the body element.

2.3 Formal Syntax

The formal syntax of the XML extension has been shown by Meijer and
van Velzen already. Ours is only slightly di�erent, but we show it here for
reference.

We extend the Haskell grammar with new productions for XML expres-
sions, which we add to the language as a possible atomic expression:

aexp ::= var

| lit

| ( exp )

...

| xml
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The new form of expression, xml, can be either an enclosing element with
children, or an empty self-contained tag:

xml ::= <name attrs>child...child</name>

| <name attrs/>

Attributes are name-value pairs, optionally followed by an extra expression:

attrs ::= attrs1 aexp

| attrs1

attrs1 ::= name = aexp ... name = aexp

A child can be a nested element, PCDATA or an embedded Haskell expression

child ::= xml

| PCDATA

| <% exp %>

PCDATA should basically match anything written between tags that is not
another tag or an embedded expression.

A name in XML may optionally be quali�ed by a namespace to which
the element belongs. Our name production thus looks like

name ::= string : string

| string

where the former means a namespace is speci�ed.

2.4 Environment

HSP pages have access to a special environment that contains information
regarding the context in which they are evaluated. The di�erent components
that together make up the environment are inspired by similar functionality
in other languages, ASP and PHP in particular. The main components are:
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Request contains information on the HTTP request that initiated
the call to the page.

Response contains information on the HTTP response being gen-
erated, that will be sent with the results of the call to
the page.

Application contains data with application scope lifetime, i.e. data
that persists between page transactions.

Session contains data that pertains to a speci�c client.

In ASP these four components are modelled as objects that can be re-
ferred to statically, e.g. Request("hello") reads the value of the parameter
"hello" from the incoming request. In PHP the components don't exist per
se, but the functionality still exists through standalone globally available
functions and collections, e.g. $_REQUEST["hello"] which is equivalent to
the ASP expression above. HSP takes a middle road, where we model the
components similarly to ASP but access them using ordinary functions. The
above expression in HSP would be getParameter "hello". Below we look
more in detail at the di�erent components and what they contain.

2.4.1 Request

Probably the most important information in the Request component, from
the point of view of the programmer, is query string data. The query string is
a set of name-value pairs, written param1 = value1&...&paramn = valuen,
that contains any parameters supplied by the client, such as XHTML form
data. Parameters in the request can be accessed using the functions

getParameter :: String -> HSP (Maybe String)

readParameter :: Read a => String -> HSP (Maybe a)

The HSP monad that these functions reside in will be introduced in section
3.2. Apart from parameter data, the Request component also contains HTTP
information such as the HTTP method used (GET or POST), as well as any
headers set in the incoming request. All this information can be accessed
using special purpose functions such as

getHTTPMethod :: HSP Method

getHTTPUserAgent :: HSP String

2.4.2 Response

The Response component stores headers that will be sent back to the re-
ceiving client along with the page contents. These are set using specialized
functions like
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setNoCache :: HSP ()

Notable is the functionality not present, namely writing any content out-
put to the response. In ASP the Response object has a method write (and
PHP has the equivalent function echo) used as in

<p>Hello <% Response.write(name) %></p>

In HSP no output may be added to the response manually, all content is gen-
erated by the page function, guaranteeing well-formedness of the generated
XML.

2.4.3 Application

A web application rarely consists of a single page, more likely it is spread
over many di�erent pages that work together to provide some functionality.
For HSP, we de�ne an application as all pages on a particular hierarchical
level, i.e. pages in the same directory. The Application component contains
data that is shared between all the pages of this application, and that persists
between single requests to pages. With our de�nition, an application cannot
spread into sub-directories, which is of course the case in real web applica-
tions. We are looking at suitable ways to extend our application model to
allow this.

In ASP, as well as in the original design of HSP, the Application compo-
nent is a simple data repository of string variables. For many applications
this is not general enough, some forms of data cannot be represented as
string values. Common examples are an open connection to a database, or
a channel for communicating with some external application. We have cho-
sen a more general approach, in which we allow the data in the Application
component to assume any form, and we leave it up to the runtime system
to keep the data alive between calls. The entire contents of the Applica-
tion component is user-de�nable, in a �le called Application.hsp within the
domain of the application. This module should contain a de�nition of a
function initApplication :: IO Application that should yield the ini-
tial contents. This function will be called by the runtime system before the
�rst request of a page within the application. The Application type itself is
abstract, so the only way to create a value of that type is using the function

toApplication :: (Typeable a) => a -> Application

The Typeable constraint arises from the fact that Application is actually a
wrapper type for Dynamic, which is used to enable an Application component
to be of any type.
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newtype Application =

MkApp {appContents :: Dynamic}

toApplication = MkApp . toDynamic

To access the application data from within a page, a programmer can use
the function

getApplication :: (Typeable a) => HSP a

that returns a value of their particular Application type.
Using values of type Dynamic can be rather error-prone, since in e�ect

we are suppressing any static type information that we have on those values,
relying instead on dynamic typing. In the following example we will show
how to reclaim some of those lost properties by clever structuring of modules.

�Counter Example� Assume that we want to add a simple access counter
to a page. We can use the Application component to store the value of the
counter, since the data therein is kept alive between calls to pages. We start
by declaring the type of our application data. Since we want to update the
value of the counter, we need to store it in a mutable reference:

type MyApplication = Mvar Int

We put this declaration in a module we call MyApplication.hs, so that we
can import it into our pages. Next, we add the following declarations:

toMyApplication :: MyApplication -> Application

toMyApplication = toApplication

getMyApplication :: HSP MyApplication

getMyApplication = getApplication

With these two functions, we now have all the functionality we need in order
to work with our application data. Also, since we have specialized the types,
we can be sure that as long as we only use these functions and not the original
polymorphic versions, everything will be typechecked statically.

Note that this is an idiom that works well in all cases. The only thing
that is speci�c to our access counter example is the mention of the type
Mvar Int, and that can be replaced by whatever type is needed.

In this particular example we can go on and de�ne the functions that we
expect to use on our counter. First we want to be able to increment the
counter, so we de�ne
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incrCounter :: HSP ()

incrCounter = do

ctr <- getMyApplication

doIO $ modifyMVar ctr (+1)

Another thing we may want to do is to read the current value of the counter:

readCounter :: HSP Int

readCounter = do

ctr <- myGetApllication

doIO $ readMVar ctr

The last thing we need to do to make our counter work is to supply an initial
value. In the module Application.hsp we �rst import MyApplication.hs, and
the de�ne

initApplication = do

ctr <- newMVar 0

return $ toMyApplication ctr

This function will be called by the runtime system before the �rst call to a
page in this application, so the value of the counter is initially 0.

Now we can write a small example page using our access counter:

import MyApplication

page = do

incrCounter

<html>

<head>

<title>Hello visitor nr <%

readCounter %></title>

</head>

<body>

<h1>Hello!</h1>

<p>You are visitor nr <%

readCounter %> to this page.</p>

</body>

</html>

2.4.4 Session

A session is a series of page transactions between the server and a speci�c
client within a certain time frame. The Session component is a data repos-
itory that lets pages maintain a state between transactions. The repository
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is a simple dictionary of name-value pairs, that can be accessed or updated
using the functions

getSessionVar :: String -> HSP (Maybe String)

setSessionVar :: String -> String -> HSP ()

The programmer may also a�ect the lifetime of the session using

setSessionExpires :: ClockTime -> HSP ()

or forcibly terminate it using

abandon :: HSP ()

Between invocations of pages the session data could be stored client-side
using cookies, or server-side in a database. Our current implementation uses
the latter, though this may be subject to change. In either case it will be
stored as string data, which is why values are restricted to the String type.

It would not be feasible to allow Session components to hold arbitrary
data the way the Application component can. The reason is sheer numbers
� while there will be a very limited number of applications running on the
same server, the number of sessions active at any given time could be huge.
For this reason, Session data must be stored outside the server itself, which
means we must restrict the data to a storable type. String seems the most
natural choice.

3 The HSP Programming Model

The design of the HSP language presented by Meijer and van Velzen [17] was
mostly proof-of-concept, and they left several areas sparsely detailed, or not
addressed at all. To get a fully functioning language we have made several
re�nements and improvements to the original design. We use this section to
discuss these changes and the reasons behind them.

We do not cover all parts that we have updated. There are many smaller
issues, for instance how to lex PCDATA literals, that are simply not inter-
esting enough to be included in this paper.

3.1 The XML datatype

Structurally XML fragments are trees, and as such they can be represented
very naturally in Haskell using an algebraic datatype. This approach is
common to well nigh every XML or HTML manipulating Haskell library
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[25, 15, 9]. Just reading the productions in the syntax straight o� we would
get a datatype in two levels, one each for the xml and child productions
respectively, as

data XML = Element Name Attributes Children

type Children = [Child]

data Child = ChildXML XML

| PCDATA String

type Name = (Maybe String, String)

There is no need for a separate constructor to represent self-contained
elements, as these are simply elements with no (an empty list of) children.
Neither do we need a constructor for embedded expressions since these will
result in something that can �t into the tree on its own.

The original design of HSP used a datatype in two levels like the one
above. Unfortunately using such a two-level data type leads to problems in
the presence of pattern matching with concrete XML syntax. In short, the
problems arise because it is impossible to syntactically distinguish between
XML patterns meant to match top-level elements, of type XML, from those
meant to match child elements, of type Child. One could imagine various
�xes to the problem, for instance using explicit annotations on patterns, but
doing so is not very pretty as it breaks the abstraction of the XML datatype.

To avoid these problems altogether, we instead merge the two levels of
the datatype into one single level, i.e.

data XML = Element Name Attributes Children

| PCDATA String

type Children = [XML]

type Name = (Maybe String, String)

Now there is no distinction between top-level elements and child elements,
and translation of pattern matching is straight-forward.

Things are seldom perfect however, this single-level datatype comes with
problems of its own. Since PCDATA now belongs to the XML type directly,
any function operating on values of type XML should now also consider the
case where that value is actually PCDATA. This can become quite awkward
and cumbersome, but at this point we can see no satisfactory solutions.

For the Attributes type we use a simple list of name-value pairs:

type Attribute = (Name, AttrValue)

type Attributes = [Attribute]

newtype AttrValue = Value String
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The only mildly surprising part ought to be the newtype for attribute
values, isomorphic to String yet separate. The reason is that we want to
control how such values are created, so we make the AttrValue type abstract.

3.2 The HSP Monad

In the original HSP, the XML type was actually even more complex than
the two-level type given above. Apart from the standard constructors for
the syntactic productions, the Child type also had two extra constructors,
ChildIO holding values of type IO Child, and ChildList holding values
of type [Child]. The reason was to allow embedding of expressions that
were non-pure in the case of ChildIO, and expressions that returned a list of
children in one go in the case of ChildList. These constructors would then
be removed during the actual evaluation of the XML tree, and replaced by
what their values really represented.

We �nd this approach less suitable for several reasons. First it gives
the impression that functions returning XML values are pure, when actually
they may contain unevaluated I/O computations. Second and perhaps more
important, it means that there is no way to distinguish between XML val-
ues that are actually pure and those that contain suspended computations,
leading to a number of problems with pattern matching, rendering, �ltering
etc.

We have instead chosen to make this potential impurity explicit when-
ever the concrete XML syntax is used. We introduce a monad HSP that
encapsulates any side e�ects, and let all XML expressions be evaluated
in this monad. Further we have removed the two o�ending constructors
and replaced them with a more general mechanism for embedding expres-
sions. In the original HSP design, embedded expressions had to be of a type
that instantiated the type class IsChild, with the single member function
toChild :: a -> XML. In our version, the type class is called IsXMLs with
the member function toXMLs :: a -> HSP [XML]. This allows both com-
putations in the HSP monad, as well as expressions returning lists, to be
embedded without cluttering the XML data type.

This solves the problem of the old approach, but instead introduces an-
other problem: we can no longer use concrete XML syntax to construct pure
values of type XML. For instance the expression <p>Hello World</p> is of
type HSP XML, even though no side e�ects take place. Our approach is thus
not perfect, but far preferable to the to the alternative, and we consider it a
small price to pay.

One possible suggestion is to use a type class for the result of a concrete
XML expression, so that an expression like the one above could have either
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type XML or HSP XML depending on the context in which it appears. The
problem with this approach is that it would lead to many situations where the
type inference engine of Haskell would not be able to infer the type properly,
which would force the programmer to add type annotations in situations like

let hw = <p>Hello World!</p>

in <body><% hw %></body>

To properly infer the type of hw to either XML or HSP XML, we would need
a mechanism for de�ning default instances, i.e. a way to tell the inference
engine to try to infer one type whenever in doubt, and only use the other if
the �rst didn't work out.

Note that with our approach there is a discrepancy between the type
of XML expressions using the concrete syntax, and the type of expressions
matched by similarly built patterns. The patterns expect values of the XML

data type, whereas expressions produce values of type HSP XML. Thus the
following is type correct:

do <img src=s /> <- <img src= img/myImg.jpg />

...

while this is not:

let <img src=s /> = <img src= img/myImg.jpg />

in ...

Apart from encapsulating I/O computations, our HSP monad also sup-
plies pages with the special HSP runtime environment discussed in section
2.4. The original design used implicit parameters to distribute the various
components to pages. The bene�t of that approach is that you get more pre-
cise types, i.e. an expression that only uses one of the components will only
show that particular component in its type. With our approach the type will
be in the HSP monad, regardless of how much of the environment is used. The
downside of using implicit parameters is that it is possible for programmers
to rebind the parameters to hold new values of the same type. Meijer and
van Velzen solved this by making all the component types abstract, but it is
still possible to rebind a parameter to undefined. Hiding the components
in the monad means the programmer can never touch the components at all,
except through the speci�c functions that we provide, and thus no rebinding
can occur.

On the top level, we require the page function to have type HSP XML,
analogous to main having type IO () for ordinary Haskell executables.
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3.3 HSP Pages

So far we have shown HSP from a programmer's perspective, using a series of
function de�nitions. As we argued in the introduction, we also want to attract
those that have no previous programming experience, but know how to write
static web pages using XHTML. To accomplish this we adopt the convention
that a valid XML (and thus XHTML) document is also a meaningful HSP
program. Expressions can then be embedded directly into the tree, making
it truly simple to add small pieces of dynamic content to an otherwise static
page. We call such pages XML pages, as opposed to standard HSP pages.
The following XML page is mostly static, but uses a clock to show when the
page was requested:

<html>

<head><title>XML page</title></head>

<body>

<h1>Hello World!</h1>

<p>Page requested at <% getSystemTime %></p>

</body>

</html>

To connect the two perspectives, we simply note that an XML page is a
standard HSP page where its XML contents implicitly make up the body of
the page function. The standard HSP page equivalent to the above is thus

page =

<html>

<head><title>XML page</title></head>

<body>

<h1>Hello World!</h1>

<p>Page requested at <% getSystemTime %></p>

</body>

</html>

and it will be compiled as such.
There is a slight problem with this page though. The function getSystemTime

resides in the module System.Time, which needs to be imported for the func-
tion to be used. With a standard HSP page we can simply add the import in
the proper place, but there is no proper place to add an import in an XML
page.

To solve this problem we introduce hybrid pages, which combine XML
pages with top-level declarations. To get the import that we want, we can
write
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<% import System.Time %>

<html>

<head><title>XML page</title></head>

<body>

<h1>Hello World!</h1>

<p>Page requested at <% getSystemTime %></p>

</body>

</html>

where the escape tags show that we are leaving the otherwise prevalent XML
context, just as when we embed expressions. The top-level code section, al-
lowed only at the top of a hybrid page, can contain anything that an ordinary
HSP page can, i.e. both imports and declarations.

3.4 Pattern Matching

As we noted in section 2.2, the original design of HSP only covered pattern
matching using XML syntax very brie�y, and we have extended that design
on a number of points. Pattern matching on attributes now works as lookups
into the set of attributes of an element. We also allow an extra pattern to
match the remainder set of elements, as a list. This gives some increased
expressiveness since it is now possible to dispatch on wether a particular
attribute is not set at all.

3.5 Regular Expression Patterns

As we also noted in section 2.2, when pattern matching on XML, ordinary
pattern matching as found in Haskell is simply not powerful enough. Mei-
jer and van Velzen note that "proper pattern matching on XML fragments
requires [...] matching of regular expressions" [17]. They consider this to
be one of the things that make Haskell less suited for XML processing. We
instead extend Haskell pattern matching with the full power of regular ex-
pressions over lists whose elements can be of arbitrary type. This extension
was presented in full in an earlier paper [8]. Examples of the use of regular
expression patterns are

last :: [a] -> a

last [_*, x] = x

concatMaybe :: [Maybe a] -> [a]

concatMaybe [(Just x | Nothing)*] = x
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Since we model the children of an XML element as a simple list, it is
straight-forward to use regular expression patterns when matching on them.
We extend the syntax to allow regular expression patterns to be mixed with
concrete XML patterns, as in the example we gave in section 2.2.

3.6 The Application Component

As noted in section 2.4.3, our Application component is more general than
in the original design. Instead of treating it as a simple data repository,
we allow the programmer to de�ne the contents freely. We cope with this
generality by using the Dynamic type, which allows us to handle all possible
user-de�ned Application components with the same code.

4 Implementation

When you want to view a certain web page, all you need to do is request that
page using a browser. You expect, without having to do anything further,
to receive the page to your browser within a reasonable time. In a sense it
is very similar to an ordinary �le request in a �le system, indeed it has been
argued that a web server can be viewed as an operation system [10].

From a web author's point of view, this is equally true. An XHTML page
is just a �le, and all that is required to give others the possibility of viewing
it is to put it in the correct folder in the virtual �le system of a web server.
Moving a page from one server to another is simple enough, di�erent server
brands or operating systems pose no problems whatsoever.

To make the transition from static to dynamic pages smooth for a web
programmer, as much as possible of this simplicity should be retained for
dynamic pages as well. Many traditionally strong CGI languages such as
Perl and Python, as well as the special purpose language PHP, are all in-
terpreted. This makes it easy enough to share or deploy programs since the
only necessary documents are the program sources.

For Haskell CGI programmers there are two choices, neither really sat-
isfactory. Interpreting pages using e.g. runHugs or runGHC retains the
simplicity of deployment, but interpretation of Haskell code is too slow to be
suited for larger applications in commercial use. On the other hand, com-
piling pages makes them faster, but complicates sharing and deployment of
pages.

For us it is imperative to give programmers a smooth transition from
static XHTML pages, so relying on the programmer to compile pages before
deployment is not really an option. To compete with the simplicity of similar
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languages and systems, we must ensure that a programmer only ever needs
to deal with source �les. But interpretation is too slow, so instead we build
our system around what we call on-request compilation:
When a page is requested, our runtime system is responsible for checking
whether that page needs to be compiled, or if that has been done already.
If the page is not previously compiled, the runtime system compiles it and
puts the resulting object �le(s) in a cache. On the other hand, if the page
has already been compiled, the runtime system can use the cached object
�le directly, without having to recompile anything. This approach obviously
leads to substantial waiting times on the �rst request of each page, but much
faster responses on any subsequent calls. In e�ect, the programmer is actually
still compiling pages, but the di�culty of doing so has been reduced to simply
requesting them through a browser.

Our approach is very similar to that taken by the ASP.NET framework
[1] that allows pages to be written using a variety of di�erent languages. The
source code documents are distributed, and pages are upon being requested
compiled to .NET bytecode. The bytecode can then be e�ciently interpreted
for subsequent requests of the same page.

4.1 Designing the runtime system

There are a lot of decisions to make when designing our runtime system, but
perhaps the most crucial and determining fact is that data with application
scope should be kept alive between page transactions. Since there is no
way in Haskell to store and restore arbitrary values to and from secondary
storage, the only viable option is to let the runtime system itself be a running
application, i.e. a server. Application data can then be kept alive in the main
memory of the server, and be supplied directly to any incoming page requests.

Another important issue is how the runtime system should communicate
with its surrounding environment. Our goal is to make it easy to integrate the
runtime system into just about any existing web server, and to accomplish
this we need a simple interface between our own server and the outside world.

The solution is not very dramatic. We want to build a server that, in the
presence of an HTTP request, generates an HTTP response. In other words,
our runtime system is an HTTP server for HSP pages only, and as such,
communication is conducted over sockets using the HTTP protocol. This
choice means that to integrate our runtime system into a general purpose
web server, that server should simply forward incoming requests for HSP
pages to the HSP runtime system on a di�erent port and then wait for a
response to become available.
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4.2 HSP(r)

Our HSP runtime server, HSP(r), is greatly in�uenced by the Haskell Web
Server (HWS) [14], and like HWS we use Concurrent Haskell [13] to ensure
high throughput and stability, and exceptions for handling timeouts and
other server malfunctions.

HSP(r) consists of one main server thread that listens for incoming re-
quests on a port. When it receives one it forks o� a dedicated light-weight
request handler thread that will perform all necessary operations. Handling
each request in a di�erent thread means the server thread is free to receive
new requests without waiting for the handling of previous requests to �nish.
This gives us concurrent execution, leading to a presumably higher through-
put. To stop pages that won't terminate, the main thread will fork o� a
second thread for each request handler thread. This second thread will sleep
for a set amount of time, and then send a timeout exception asyncronously
to its associated request handler, forcibly terminating the execution.

Request handling is accomplished by a sequence of operation steps applied
to the incoming request in a pipeline-like fashion. The stages of the pipeline
are, in order;

1 Parse request

2 Find page

3 Load page

4 Set up environment

5 Evaluate page

6 Render results

7 Generate response

8 Send response

Stages 1,2,6,7 and 8 are all straight-forward to implement. The interesting
and slightly innovative parts are the stages that load the requested page, set
up the proper environment, and then evaluate the page in that environment.

4.2.1 Loading pages dynamically

When an incoming request has been successfully read and the existance of
the requested HSP page has been veri�ed, the server should load that page
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into its own execution space in order to evaluate it. To load �les dynamically
in this fashion we rely on hs-plugins [18], which lets Haskell applications load
and access content in external object �les. Apart from the actual loading,
hs-plugins also provides us with functionality to compile pages, and to add
pieces of static content to them. As we will show, this extra functionality
comes in very handy.

On the �rst request of a particular page, the server must go through
several steps in order to get something that it can evaluate to a response.
The �rst step is to merge the �le with a stub �le containing exactly two
things, namely

import HSP

page :: HSP XML

Adding the import means that all HSP pages get access to the standard
functionality that HSP provides - the HSP Prelude of a sorts. The import
is added in a safe fashion, so if the page already explicitly imports the HSP
module then nothing will be added to it. The type declaration on the other
hand will always be added to the source �le, overwriting any existing type
given for the page function in the module. This guarantees both that a
successfully compiled HSP page will indeed have a page function, and that
it will be of the required type HSP XML.

This is all handled nicely by hs-plugins through the function mergeToDir:

tmpSrcFile <- mergeToDir srcFile stubFile cacheDir

We have simpli�ed this and the following code slightly. In particular we do
not consider the erroneous case here.

The second step is to compile the intermediate source �le that is the result
of the merging. Once again hs-plugins gives us the required functionality:

objFile <- makeAll tmpSrcFile hspFlags

The makeAll function works just like the GHC compiler when given the
--make �ag (and the -no-link �ag as well; we just get the object �les). Not
surprising considering that this function really calls GHC behind the scenes,
with said �ag(s) given. We also supply a number of extra �ags, among them
the �ag that tells GHC to use our syntactic preprocessor on the source �les.
This preprocessor will go through all �les, search for XML expressions and
patterns, and replace them with equivalent vanilla Haskell code.

The object �le resulting from the compilation can then be loaded into the
server application itself. More speci�cally we load the page function from
the object �le, using the core functionality of hs-plugins:
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page <- load "page" objFile

We know for certain that such a function exists due to the stub �le declara-
tions, so we need none of the possible extra safeguards that hs-plugins could
provide.

Of these three steps, the �rst two will only be done on the very �rst
request of any given page. On subsequent requests the server can use the
already compiled object �le for that page from the cache. The loading step
is also only done once per page, but needs to be redone whenever the server
is restarted.

4.2.2 Runtime environment

To set the scene for the page evaluation, we need to set up the proper runtime
environment. HSP de�nes four runtime components: Request, Response,
Application and Session as discussed in section 2.4.

The Request component is an interface to the data contained in the HTTP
request that triggered the call to this page. It is more or less already set up
in the Read request stage, what remains to be done is to parse the various
components of the request into values of suitable data types.

The Response component is even easier to set up. It is intended as an
interface to the outgoing HTTP response that will carry the results of this
page back to the caller, and it will naturally be empty initially. We model
it as a MVar holding a list of headers, to which code in the HSP monad can
add.

Setting up the Application component is a lot trickier. The contents of
this component is user de�nable, accessible to all pages in the application,
and should be persistent during the lifespan of the application. To enable this
we use much the same techniques as for pages. The user de�nes the initial
contents of the component in a �le called Application.hsp. On the �rst request
of a page in the application, that �le is merged with a stub �le to guarantee
that it contains a function initApplication :: IO Application. The in-
termediate �le is compiled in the cache, and the resulting object �le is loaded
into the server.

The main di�erence from how pages are treated is that the loaded function
initApplication is only called once, not once for each request, and the
result of that call is stored to be given to all subsequent calls to pages in
the same application. Thus the �rst thing the server does when it tries to
set up the Application component is to check among the stored components,
and only if it �nds nothing will it try to load the Application from its object
�le. If no Application.hsp �le exists for the application, the server inserts
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(throw NoApplicationDefined) in its place, so as long a page doesn't try
to access the Application component everything will work �ne.

The Application component is modelled in the server as a value of type
Dynamic, which means it can be (almost) whatever type the programmer
wishes.

The Session component contains data that should be persistent across
transactions, i.e. a series of requests to (possibly) di�erent pages on the
server from the same client. To enable this persistency we rely on the HTTP
mechanism for persistent state - cookies. There are clearly problems associ-
ated with cookies as has been discussed by Thiemann [23], but at this point
we see no better solution.

The actual data contained in each Session component is stored in a server-
side database, indexed by unique session IDs, and it is the IDs that are stored
in cookies on the client. To set up the Session component for a particular
page, the handler looks up the appropriate cookie among the headers of the
request, and asks the database for the corresponding data. We wrap the
Session component in a Maybe type, so if no session cookie is set in the
request (i.e. no session is active) the handler uses Nothing for the Session
�eld. A session can be started at any time during the execution of a page,
and using a Maybe value instead of an exception as for Application means we
can replace the Nothing with something if that should occur.

4.2.3 Page evaluation

Evaluating the page now simply amounts to running the page function in
the environment. The result will, if nothing goes wrong, be an XML tree
that can be straight-forwardly rendered. If something does go wrong, i.e.
an uncaught exception occurs, the handler catches it and generates a 500

Internal Server Error response, optionally with details regarding the error
that occurred.

The XML tree itself is not the only result of the execution however. Both
the Session and Response components could hold new or updated data that
should be handled. Any headers in the Response component will simply be
added to the outgoing HTTP response. If a session is active, the handler
will extract the session ID and generate a Set-Cookie header for it. Also any
updates to session data during the evaluation should be pushed down to the
database for future reference.
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5 Status

We have a working implementation of HSP and HSP(r), available through
darcs [3] at

http://www.cs.chalmers.se/~d00nibro/hsp

HSP(r) works as speci�ed as a stand-alone server, however, to be really
useful we also need to write code that binds HSP(r) to general-purpose web
servers (e.g. Apache).

We also supply a module RunCGI that allows programmers to run their
HSP programs in CGI mode. This is somewhat less e�cient than using the
server, and neither the Application component nor the Response component
will be accessible.

There are a number of implementation details left to address, such as
the handling of HTTP POST requests, �le uploads, etc. These are not
conceptually di�cult in any way, and they have been left out due to time
constraints only.

Our preprocessor is built as an extension of the standard libraries package
haskell-src, which means we get the parsing of ordinary Haskell code for free.

6 Related Work

The work most related to ours is of course the original HSP by Erik Meijer
and Danny van Velzen. We have revised, re�ned and extended the original
design and redesigned the runtime system, so while their work might be seen
as a prototype, ours is a full-blown implementation.

The closest relative of HSP is probably WASH [23], a Haskell domain spe-
ci�c language for writing CGI programs. It supports concrete XML syntax in
expressions, and elegantly handles session state over page transitions. Using
typed combinators for HTML generation, WASH supports a very high-level
programming model for writing dynamic web pages.

WASH uses type classes to statically enforce that the HTML trees gen-
erated are not only well-formed, but also (almost) type correct with respect
to the XHTML DTD [22]. By doing this they can still use a very simple
datatype for XML trees in the background, since the type enforcement takes
place outside the datatype itself. The XML datatype is then hidden from
the programmer, so no further validations are needed.

Unfortunately such an approach would not work for HSP since we allow
pattern matching on XML trees, and without type information in the XML
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trees there is no way to give a correct "type" to XML fragments obtained
this way.

Many other CGI libraries exist for Haskell [15, 9], all based on combinators
for HTML. HSP sports a few low-level combinator libraries for web page
creation, comparable in design to many of these other libraries. Still, the
strength of HSP is as a framework for higher-level libraries, and it should be
possible to modify at least some of these other libraries to work with HSP
as well. The runtime system of HSP enables application state which is not
possible using CGI only.

The languages that HSP aspires to compete with are instead languages
like PHP [5] and ASP [11] that have programming models very similar to
that of HSP. These languages are very easy to pick up and use for small
applications, indeed the ease with which one can add dynamic content to
an otherwise static page using PHP is probably the number one reason for
its popularity today. The problem with these languages is that they are not
really suited for processing HTML or XML, in fact they treat HTML frag-
ments as strings. Thus they cannot make any guarantees of wellformedness
of the generated output, which in turn means they do not scale very well for
larger applications.

The new improved version of ASP, ASP.NET [1], is basically ASP with
a large set of customizable and highly useful so called server tags for writing
HTML. These are in some sense analogous to combinators in functional lan-
guages. As long as the programmer only uses these server tags the output is
guaranteed to be well-formed, improving conditions for scalability, but it is
still possible to work directly on the string level as in the old ASP.

Several functional languages exist that are designed solely for the purpose
of XML processing, e.g. XMLambda [16], XDuce [12], CDuce [6]. These so-
called XML-centric languages are clearly better suited for XML processing
than HSP in some aspects since they can not only guarantee wellformedness
of the generated XML, but also statically validate the XML against e.g. a
DTD. This is accomplished by using more sophisticated type systems than
that of Haskell.

HSP's advantage is once again the runtime system that gives special-
ized support for dynamic web pages. Also since HSP builds on the general-
purpose programming language Haskell, there exists a large codebase already
available, which cannot be said about these XML-centric languages.

FastCGI [4] is a new open standard intended by its creators to subsume
and replace CGI. It improves CGI by allowing programs that generate pages
to live across several requests to the same page, thereby allowing them to
maintain a state between di�erent requests.
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7 Future Work

HSP is continously evolving, and there are many areas that could be greatly
improved. The programming model is fairly complete, but needs lots of
cosmetics to be really attractive to work with. It is also very low-level in
many ways, and the code one would write in the base programming model
is essentially imperative. Many functional programmers will �nd this a bit
tedious and there are most certainly more functional approaches to web page
construction. However, this could very well simply be a matter of providing
the right libraries. We would like to see HSP as a platform on which library
constructors can create abstractions that provide more functional interfaces,
while getting much of the tedious, low-level parts such as server integration
for free. It would be really nice to see an implementation of e.g. WASH built
on the HSP platform.

7.1 Continuations

Our HSP programming model lacks one major component � a model to
smoothly handle continuations. The ability to work with �rst-order continu-
ations is one of the greater advantages that functional languages have when
it comes to web programming, for instance it is one of the main motivations
for the creation of Links [24].

As it is, we can de�ne a library that restricts continuations to be de�ned
on top-level. Real continuations are so much more than that however, clearly
we would like to be able to compute continuations programmatically within
our pages. To handle real continuations we would need a way to store these
computed continuations on the server between transactions, or use a trick
like that of WASH to reconstruct continuations from data stored in data
sent to the client. The former approach can lead to huge space problems
since there is really no way to know if and when a particular continuation
will be resumed by a call from a client. Also in the presence of laziness it is
not always obvious just what code will be executed when the continuation
is invoked and what code will be executed when the continuation is created.
The WASH trick alleviates the server from the burden of storing continua-
tions, but means more data will be sent between the server and the client
during each transaction.

We leave the implementation of continuations an open issue for now and
hope to return to tackle it in not too long.
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7.2 HSP(r)

The implementation provides a fully functional HSP system, but there is
room for plenty of improvements. Perhaps the greatest deterrent at this
point for prospective users is the horrible error messages that arise from the
fact that we use a purely syntactic preprocessor. This means that all code
is translated into Haskell before it is type checked, so any type errors will
be reported on the post-processed code. The conceptually best, possibly the
only, solution to the problem is daunting, namely to extend the preprocessor
with a type checker that can handle our XML syntax as well as ordinary
Haskell code, including all extensions that HSP uses.

To be able to use HSP(r) at all we also need to provide bindings to it
for general purpose web servers like Apache. At the moment we provide a
server-independent version of HSP that uses CGI and manual compilation,
but due to the limitations of CGI it cannot use the Application component,
nor is it as e�cient as the server.

8 Conclusions

All in all, HSP is a really cool language that at the very least is as good as
other specialized scripting languages like PHP and ASP. The area where we
need to put the most e�ort from now on is library construction, where these
other languages de�nitely have the edge so far. Luckily much functionality
is available through ordinary Haskell libraries, something that has been a
major motivation to build a web language around Haskell in the �rst place.

Many things presented in this paper simply reiterate what Meijer and van
Velzen said �ve years ago. Perhaps the most important conclusion of this
paper, and the project as a whole is thus that HSP is working, and it is every
bit as good as we had hoped for. Our initial design goals were a language
that has the expressive power of Haskell to appeal to the hardcore functional
programmer, while at the same time allowing �edgling web programmers to
�nd it easy enough to begin with after having written static pages only. It
remains to see if this will be proven true, but we believe HSP has every
chance to succeed if given a chance.

It is our hope that our presentation in this paper will convince Haskell
programmers to write their web applications in HSP. To really take o�, HSP
will need an active community to help with extensions and improvements,
libraries and example programs.

We also believe that our use of dynamic loading and on-request compi-
lation are interesting in themselves, as nice code examples for others. The
same could be said about the way we use the Dynamic type to smoothly
handle values of varying types.
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Flow Locks

Towards a Core Calculus for Dynamic Flow Policies

Niklas Broberg David Sands

Abstract

Security is rarely a static notion. What is considered to be confi-
dential or untrusted data varies over time according to changing events
and states. The static verification of secure information flow has been
a popular theme in recent programming language research, but infor-
mation flow policies considered are based on multilevel security which
presents a static view of security levels. In this paper we introduce a
very simple mechanism for specifying dynamic information flow poli-
cies, flow locks, which specify conditions under which data may be read
by a certain actor. The interface between the policy and the code is via
instructions which open and close flow locks. We present a type and
effect system for an ML-like language with references which permits
the completely static verification of flow lock policies, and prove that
the system satisfies a semantic security property generalising noninter-
ference. We show that this simple mechanism can represent a number
of recently proposed information flow paradigms for declassification.

1 Introduction

Unlike access control policies, enforcing an information flow policy at run
time is difficult because information flow is not a runtime property; we cannot
in general characterise when an information leak is about to take place by
simply observing the actions of a running system. From this perspective,
statically determining the information-flow properties of a program is an
appealing approach to ensuring secure information flow. However, security
policies, in practice, are rarely static: a piece of data might only be untrusted
until its signature has been verified; an activation key might be secret only
until it has been paid for.
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This paper introduces a simple policy specification mechanism based on
the idea that the reading of storage location ` by certain actors (principals,
levels) is guarded by boolean flags, which we call flow locks. For example,
the policy `{High;paid ⇒Low} says that ` can always be read by an actor with a
high clearance level, and also by an actor with a low clearance level providing
the “paid” lock is open.

The interface between the flow lock policies and the security relevant
parts of the program is provided by simple instructions for opening and
closing locks. The program itself does not depend on the lock state, and the
intention is that by statically verifying that the dynamic flow policy will not
be violated, the lock state does not need to be computed at run time.1

In addition to the introduction of flow locks, the main contributions of
this paper are:

• The definition of a type system for an ML-like language with references
which permits the completely static verification of flow lock policies

• A formulation of the semantics of secure information flow for flow locks,
and a proof that well typed programs are flow-lock secure (the reader
is referred to the extended version of this article for the details).

• The demonstration that flow lock policies can represent a number of
recently proposed information flow paradigms.

Regarding the last point, the work presented here can be viewed as a study
of declassification mechanisms. In a recent study by Sabelfeld and Sands
[18], declassification mechanisms are classified along four dimensions: what
information is released, who releases information, where in the system in-
formation is released, and when information can be released. One of the
key challenges stated in that work is to combine these dimensions. In fact,
combination is perhaps not difficult; the real challenge is to combine these
dimensions without simply amassing the combined complexities of the con-
tributing approaches. Later in this paper we argue that flow locks can en-
code a number of recently proposed “declassification” paradigms, including
the lexically scoped flow policies introduced by Almeida Matos and Boudol
[2], Chong and Myers’ notion of noninterference until declassification [5],
and Zdancewic and Myers robust declassification [22, 13]. These examples,
represent the “where”, “when” and “who” dimensions of declassification, re-
spectively, suggesting that flow locks have the potential to provide a core
calculus of dynamic information flow policies.

1 The term dynamic flow policy could have different interpretations. We use it in the
sense that the flow policies vary over time, but they are still statically known at compile
time.
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The remainder of the paper is organised as follows. Section 2 gives an
informal introduction to flow locks by showing a few motivating examples.
In Section 3 we then present the system formally, and outline a semantic
security condition in Section 4. Section 5 discusses related systems, with an
emphasis on how we can use flow locks to encode them. Finally Section 6
concludes.

2 Motivating Examples

1 int aBid = getABid();
2 int bBid = getBBid();
3 makePublic(aBid);
4 makePublic(bBid);
5 . . . decide winner + sell item

First let us assume we have a simple imper-
ative language without any security control
mechanisms of any kind. Borrowing an ex-
ample from Chong and Myers [5], suppose
we want to implement a system for online
auctions with hidden bids in this language.
We could write part of this system as the code on the right.

This surely works, but there is nothing in the language that prevents us
from committing a serious security error. We could for instance accidently
switch the lines 2 and 3, resulting in A’s bid being made public before B
places her bid, giving B the chance to tailor her bid after A’s.

Flow locks are a mechanism to ensure that these and other kinds of pro-
gramming errors are caught and reported in a static check of the code.

The basic idea is very similar to what many other systems offer. To
deny the flow of data to places where it was not meant to go, we anno-
tate variables with policies that govern how the data held by those variables
may be used. Looking back on our example, a proper policy annotation
on the variable aBid could be {A; BBid⇒B}. The intuitive interpre-
tation of this policy is that the data held by variable aBid may always
be accessed by A, and may also be accessed by B whenever the condi-
tion BBid, that B has placed a bid, is fulfilled. BBid here is a flow lock
— only if the lock is open can the data held by this variable flow to B.

function getABid(){
int {A; BBid⇒B} x

= bidChanFromA;
open ABid;
return x;

}

To know whether the lock is open or not we
must look at how the functions for getting the
bids could be implemented.

The function shown on the right first
fetches the bid sent by A. We model the in-
coming channel as a global variable that can be
read from, one with the same policy as aBid .
When the bid has been read, the function signals this by opening the ABid

lock—A has now placed a bid and the program can act accordingly. The im-
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plementation of getBBid follows the same pattern, and will result in BBid

being open. Now both bids have been

function makePublic(bid){
publicChannel = bid;

}

placed and can thus be released. The
makePublic function would be imple-
mented as shown on the right. The out-
going publicChannel is also mod-
elled as a global variable that can be written to. This one has the policy
{A; B} attached to it, denoting that both A and B will be able to access any
data written into it. At the points in the program where makePublic is
applied, both A and B will have placed their bids, the locks ABid and BBid

will both be open, and the flows to the public channel will both be allowed.
However, if the lines 2 and 3 were now accidently switched, it would be a
different story. Then we would attempt to release A’s bid, guarded by the
policy {A; BBid⇒B}, onto the public channel with policy {A; B}. Since
the flow lock BBid will then not yet be opened, this flow is illegal and the
program can be rejected.

1 auctionItem(firstItem);
2 aBid = getABid();
3 bBid = getBBid();
4 makePublic(aBid);
5 makePublic(bBid);
6 . . . decide winner + sell item
7 auctionItem(secondItem);
8 aBid = getABid();
9 bBid = getBBid();

10 makePublic(aBid);
11 makePublic(bBid);
12 . . . decide winner + sell item

Taking the example one step further,
assume that we have two items up for auc-
tion, one after the other. We can imple-
ment this rather naively as the program
to the right. The locks ABid and BBid

will both be opened on the first calls to
the getXBid functions. But unless we
have some means to reset them, there is
again nothing to stop us from accidently
switching lines to make our program inse-
cure, this time lines 9 and 10. The same
problem could also be seen from a dif-
ferent angle: what if the locks were al-
ready open when we got to this part of
the program? Clearly we need a closing mechanism to go with the open.
The function auctionItem could then be implemented as shown here. By
closing the locks when an auction is initiated, we can rest assured that both
A and B must place new bids for the new item before either bid is made
public.

function auctionItem(item){
close ABid, BBid;
... present item ... }

It should be fairly easy to see
that what we have here is a kind of
state machine. The state at any pro-
gram point is the set of locks that
are open at that point, and the open
and close statements form the state
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transitions. A clause σ ⇒ A in a policy means that A may access any data
guarded by that policy in any state where σ is open.

Our lock-based policies also give us an easy way to separate truly secret
data from data that is currently secret, but that may be released to other
actors under certain circumstances. Assume for instance that payment for
auctioned items is done by credit card, and that the server stores credit card
numbers in memory locations aCCNumand bCCNumrespectively. Assume
further that the line aBid := aCCnum; is inserted, either by sheer mistake
or through malicious injection, just before where aBid is made public. This
would release A’s credit card number to B, however, the natural policy on
aCCNum would be {A}, meaning only A may view this data, ever. Thus
when we attempt the assignment above, it will be statically rejected since
the policy on aBid is too permissive.

All the above are examples of policies to track confidentiality. The dual of
confidentiality is integrity, i.e. deciding to what extent data can be trusted,
and it should come as no surprise that flow locks can handle both kinds.

Returning to the example with the credit card, we assume that when A
gives her credit card number, it must be validated (in some unspecified way)
before we can trust it. To this end we introduce a “pseudo” actor T (for
“trusted”) who should only be allowed to read data that is fully trusted. We
then use an intermediate location tmpACCNumto hold the credit card number
when it is submitted by A. This location is given the policy {A; ACCVal⇒T},
stating that this data is trusted only if the lock ACCVal is open, which is
done when the submitted number has been validated. Once validated we can
transfer the value to aCCNum, which now has the policy {A; T} stating that
this data is trusted.2

3 A Secure Type and Effect System

In the previous section we used a simple imperative language to give an easy
introduction to the concept of flow locks. In this section we define the type
system for flow locks in the more general context of an ML-like language with
recursion and references (but without polymorphism).

3.1 The language λFL

The terms and types of our language, dubbed λFL, are listed in Figure 1.

2 In order to prevent overwriting this data with a new number that hasn’t been vali-
dated, we should also be sure to close the lock ACCVal once the assignment is done.
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Policies: p ::= { c1; . . . ; cn} c ::= { σ1, . . . , σk}⇒A

Values and types: v ::= n | b | () | λx.M | `p,τ

τ ::= int | bool | unit | (τ, p)
Σ,p,p,Σ−−−−→ τ | ref p τ

Terms: M ::= v | x | MM | if M then M else M | rec x.M
| refp,τ M | !M | M := M | open σ | close σ

Derived forms: let x = M1 in M2 ≡ (λx.M2)M1

M1; M2 ≡ (λ .M2)M1

Figure 1: The λFL language

The policy language is worth some extra attention. The flow lock policies
with which we work assumes a set of actors (or levels, principals) ranged
over by A, B, and a set of flow locks ranged over by σ, with Σ for sets of
locks. Both actors and flow locks are global in a program. A policy is a set of
clauses, where each clause of the form Σ ⇒ A states the circumstances (Σ)
under which A may view the data governed by this policy. Σ is a set of locks
which we name the guard of the clause, and interpret it as a conjunction.
Thus for the guard to be fulfilled, all the locks in Σ must be open. We
can however have more than one clause for the same A, in which case the
separate clauses also form a conjunction — A may read the data if either of
the guards are fulfilled. In the special case where the guard contains no locks,
signifying that the corresponding actor A may always view the data, we write
the clause as only A instead of {}⇒A. From a logical perspective a policy
is just a conjunction of definite Horn clauses, i.e.

∧
i{σi1 ∧ · · · ∧ σin⇒Ai}.

We implicitly identify policies up to logical equivalence.3

Now we can continue with the language itself. Apart from the terms
from standard λ calculus with recursion, λFL has constructs for creating
(ref), dereferencing (!) and assigning to (:=) memory locations (`p,τ ) through
references. In addition to the core terms, we can also derive a few useful
language constructs as is also shown in Figure 1.

The reference creation construct takes an extra parameter p which is the
policy that the contents should be governed by. The same parameter also
shows up on the memory locations themselves, together with the base type τ
of the contents. In many cases this τ is irrelevant, or clear from the context,

3It is worth noting that we do not allow negative flow policies. Our policy language is
monotonic, i.e. the more locks that are open, the more flows are allowed.
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and in those cases we omit it and just write `p. Function types are annotated
with read and write policies, and start and end states, and arguments are
annotated with a reading policy. We discuss the meaning of these when
we define the type system. There are also the open and close terms for
manipulation flow locks, thereby changing the state of the program.

The semantics of the language is standard, but apart from the term M
and a memory µ, the configurations include the current state Σ. This state
is the set of currently open locks, which are effected by the execution of
open and close expressions. The small-step semantics of these are simply:

〈Σ,open σ, µ〉 → 〈Σ ∪ {σ}, (), µ〉 〈Σ, close σ, µ〉 → 〈Σ \ {σ}, (), µ〉

It is important to note that the only interaction between a program and
the lock state is via the open and close instructions. This is because we are
aiming for a completely static verification — we include the lock state in the
semantics only to be able to prove properties about flows, but the state is
not actually represented at runtime. For this reason we also do not need to
consider potential covert channels introduced by the flow lock state.

3.2 Some intuitions about flow-lock security

Before we define our type system, it is useful to get some intuitions about
which programs we deem secure/insecure. At this point we only concern
ourselves with information leaks arising from direct or indirect data flows.
In particular we will not consider timing or termination sensitivity.

`{A} := !m{B}(1)

`{A;B} := !m{B}(2)

`{A} := !m{A;B}(3)

`{σ⇒A;B} := !m{B}(4)

`{A} := !m{σ⇒A}(5)

A few small example programs are presented
on the right. All of these contain insecure direct
data flows, except (3). In (1) the contents of m{B}
may only be read by B, but we are attempting
to leak them into a location readable by A. Same
thing goes for (2) — even though B can read the
contents of the target location, we are still leaking
the contents of m{B} to A. The simple pattern is
that we may not write data to a memory location if that location may be read
by someone who cannot already access the data. What’s more, this should
hold for future time as well. Thus if a reader could access the data from
the location we are writing to in some future state, that reader must also
have access to the data that is being written, in that same state. Thus the
example m{σ⇒A} :=!`{σ⇒A} is secure while program (4) is not. In program
(5) we attempt to take data not yet readable by A, and put it in a location
where A could read it right away. This should clearly not be allowed for the
same reasons as for (4).
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open σ; `{A} := !m{σ⇒A}(6)

`{A} := (open σ; !m{σ⇒A})(7)

The lock state in effect at the point
of the assignment determines its valid-
ity, so the programs (6) and (7) are
secure.

However, we also want a program like (8) below to be considered secure,
so we should take the policy of data read from some memory location to be
the policy on the location, but taking into account the current state.

(8) `{A} := let x = (open σ; !m{σ⇒A}) in (close σ;x)

In program (8) above, the data read from the reference will thus have the
policy {A} and not {σ⇒A}, since it is read in a state where σ is open.

Putting all this slightly more formally, data may be written to a memory
location if and only if the policy on the location is at least as restrictive as
the one on the data, with respect to the state in effect at the point of the
assignment. We give a formal definition of this in the next section.

We must also handle indirect flows that arise from various branching
situations. A very simple example program containing an invalid indirect
flow is

(9) if !`{A} then m{B} := true else m{B} := false

This program is obviously insecure since it will leak the value of `{A} into
m{B}, but for some programs it is not so easy to tell. Consider the three
programs

(10) if !`{σ⇒A} then (open σ;m{A} := true) else (open σ;m{A} := false)

(11) if !`{σ⇒A} then (open σ;m{A} := true; close σ) else ()

(12) if (open σ; !`{σ⇒A}) then (close σ;m{A} := true) else ()

Program (10) could be argued correct since at the points where we leak the
information to A, i.e. the assignments, the state allows A to access the result
of the branching conditional directly, and hence the leak is secure.

However, as program (11) shows it is not that simple. If the second
branch in (11) is chosen, the value of the condition is still leaked to A by
the absence of a write, but at no point does the state allow the flow. The
leaks come from knowing which of the two branches is taken, which suggests
that the leak actually occurs at the branch point. Thus it is the policy of the
condition, taken in the state in effect at the branch point, that decides what
writes the branches may perform. This means that (9), (10) and (11) are all
insecure, while (12) is secure even though the lock is closed again before the
write.
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(!`{A}) ()(13)

(!`{σ⇒A}) ()(14)

(!`{σ⇒A}) (open σ; ())(15)

(!`{A}) := 0(16)

(!`{σ⇒A}) := (open σ; 0)(17)

(λx.`{B} := x) (!m{A})(18)

(λx.`{B} := 0) (!m{A})(19)

Another possible source of indirect leaks
is function application. If the function itself
is secret, an attacker could still get informa-
tion about what that function is by observ-
ing its effects, just like he could know which
branch was taken by observing the effects
of a conditional expression. Thus in a sense
we can view function application as a kind
of branching.

Consider the programs (13) – (19). In
the program (13) we must ensure that the function read from the reference
does not write to locations visible by anyone other than A, otherwise we
could leak information about which function that was used. As an example,
if the function read from `{A} in (13) is (λx.m{B} := 1) or (λx.m{B} := 2),
B can determine which of the two that was used by reading m{B}. We treat
the application point in the same way as the branch point of a conditional,
so in program (14) the body of the function must not write to a location
directly visible to A, even if it first opens σ. However, since we have a call-
by-value semantics, in program (15) the function body may perform writes
to locations directly visible to A, even if it first closes σ, since σ will be open
at the application point.

A similar situation is assignment to a reference that in turn has been read
from a reference, as illustrated in program (16) which should be disallowed if
the reference read from `{A} is visible to anyone other than A. In particular,
the contents of `{A} could be m{B} or n{B}, in which case B can determine
the contents of `{A} by checking which of the two latter locations that contain
the value 0. However, just as for application, program (17) is secure if the
reference assigned to has policy {A}, or any policy that is more restrictive
than {A}, since σ is opened before the assignment takes place.

We also need to look at how functions handle the values passed to them
as arguments. Clearly we want to rule out a direct leak in the function
body, as the one in example (18). One solution attempt could be to rule out
all functions that write to “low” memory, i.e. locations with less restrictive
policies that the one placed on the argument. But this also rules out perfectly
secure programs such as (19) which in particular would mean that we could
not derive a sequential composition form as in figure 1 without placing too
heavy restrictions on the writing capabilities of the second sub-program.
Thus we want our type system to treat these two programs differently —
(18) should be deemed insecure, but not (19).

Other issues such as whether our system is termination sensitive or timing
sensitive (see [16] for an overview of these concepts) are orthogonal to the
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above discussion. We choose to develop a type system and semantics for
termination and timing insensitive security. Termination insensitivity makes
the type system simpler but the semantics more complex.

3.3 The Type System

Now we have all the intuition needed to construct the type system. We choose
to model our system as a type and effect system in the style of Almeida Matos
and Boudol [2]. This means in particular that all expressions will be given
a reading effect and a writing effect. In our system the reading effect of an
expression is a policy which states who may read the result of that expression,
and in what lock states they may do so. The writing effect is also a policy,
which records which actors and in what lock states they can see the memory
effect of the expression’s execution. Type judgments then have the form

Γ; Σ ` M : τ, (r, w)⇒ Σ′

• Γ is a typing environment for variables giving a type and policy for
each variable.

• Σ is the state, i.e. the set of locks currently open.

• τ is the type of the term

• (r, w) are the reading and writing effects of the term, both on the form
of policies

• Σ′ is the state the program will be in after evaluating the term

First we need to define a few operators on policies that we will use in the
typing rules. The aforementioned ordering of how restrictive policies are is
defined as

p1 � p2 ≡ ∀(Σ2 ⇒ A) ∈ p2.∃(Σ1 ⇒ A) ∈ p1.Σ1 ⊆ Σ2

Read out, we say that p1 is less restrictive than p2 if and only if every clause
in p2 is matched by a clause in p1 for the same A with a less restrictive guard
(one with no additional locks). From the logical perspective, this ordering
corresponds directly to implication. The most restrictive policy is {}, also
written >, and data with this policy can never be accessed by anyone. On
the other end of the spectrum is ⊥, defined as the set of all actors in the
system. In other words, data marked with ⊥ can be read by everyone at all
times.
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To join two policies means combining their respective clauses, thereby
forming the logical disjunction. We define

p1 t p2 ≡ {Σ1 ∪ Σ2 ⇒ A | Σ1 ⇒ A ∈ p1, Σ2 ⇒ A ∈ p2}

It should be intuitively clear that the join of two policies is at least as re-
strictive as each of the two operands, i.e. p � pt p′ for all p, p′. In contrast,
forming the union of two policies, i.e. the meet, corresponding to u or logical
conjunction, makes the result less restrictive, so we have p u p′ � p for all p,
p′. Both u and t are clearly commutative and associative.

Finally we need to define using a policy with respect to a particular state,
or normalising to a state. We say that policy p normalised at state Σ is

p(Σ) ≡ {Σ′ \ Σ ⇒ A | Σ′ ⇒ A ∈ p}

Informally, we remove all open locks from all guards in p, since these no
longer restrict data governed by p. This function is antimonotonic, so Σ ⊆
Σ′ =⇒ p(Σ′) � p(Σ), and in particular p(Σ) � p for all Σ. Logically this
operation is a partial evaluation, where all variables (locks) that appear in
Σ are set to true in p.

The type and effect system is presented in Figure 2. The rules for literal
values are straight-forward, giving all such values the reading effect bottom.
However, from the variable rule we see that variables are given a reading
policy. This is used to keep track of the reading policies of function argu-
ments, as can be seen from the rules for abstraction and application, and
the purpose is to disallow programs like (18) while still allowing (19). It is
important to note that we do not check that r2(Σ2) � wf in the application
rule, since doing so would invalidate program (19). Instead we rely on the
type checking of the body of the function to find any leaks inside it, with the
help of the annotation on its parameter.

In the rule for abstractions, we annotate the function arrow with the la-
tent read and write effects that will be accurate for the function body once it
is applied. We also annotate the arrow with the state that the program will
be in at the application point, and the state the program will be in after eval-

uating the body. The interpretation of a function with type (τ, rα)
∆,r,w,∆′
−−−−−→ τ ′

is thus that when applied in state ∆ on an argument of type τ and with read-
ing policy rα, it will produce a result of type τ ′ with reading policy r. The
writing policy w states who could see that the function has been applied,
and the whole program will be in state ∆′ afterwards. This is all mirrored
by the appropriate states in the application rule.
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Γ;Σ ` n : int, (⊥,>)⇒ Σ Γ;Σ ` b : bool, (⊥,>)⇒ Σ

Γ;Σ ` `p,τ : refp τ), (⊥,>)⇒ Σ Γ;Σ ` () : unit, (⊥,>)⇒ Σ

Γ, x : (τ, rα);∆ ` M : τ ′, (r, w)⇒ ∆′

Γ;Σ ` λx.M : (τ, rα)
∆,r,w,∆′

−−−−−−→ τ ′, (⊥,>)⇒ Σ

x : (τ, r) ∈ Γ
Γ;Σ ` x : τ, (r(Σ),>)⇒ Σ

Γ;Σ ` open σ : unit, (⊥,>)⇒ Σ ∪ {σ} Γ;Σ ` close σ : unit, (⊥,>)⇒ Σ \ {σ}

Γ, x : (τ, r); Σ ` M : τ, (r, w)⇒ Σ
Γ;Σ ` rec x.M : τ, (r, w)⇒ Σ

Γ;Σ ` M : τ, (r, w)⇒ Σ′

Γ;Σ ` refp M : refp τ , (⊥, w u p)⇒ Σ′
Γ;Σ ` M : refp τ , (r, w)⇒ Σ′

Γ;Σ ` !M : τ, (r t p(Σ′), w)⇒ Σ′

Γ;Σ ` M1 : refp τ , (r1, w1)⇒ Σ′ Γ;Σ′ ` M2 : τ, (r2, w2)⇒ Σ′′

Γ;Σ ` M1 := M2 : unit, (⊥, w1 u w2 u p)⇒ Σ′′ r1(Σ′′) t r2(Σ′′) � p

Γ;Σ ` M0 : bool, (r0, w0)⇒ Σ′ Γ;Σ′ ` Mi : τ, (ri, wi)⇒ Σi r0(Σ′) � w1 u w2

Γ;Σ ` if M0 then M1 else M2 : τ, (r0 t r1 t r2, w0 u w1 u w2)⇒ Σ1 ∩ Σ2

r1(Σ2) � wf

Γ;Σ ` M1 : (τ, r2)
Σ2,rf ,wf ,Σ3−−−−−−−−→ τ ′, (r1, w1)⇒ Σ1 Γ;Σ1 ` M2 : τ, (r2, w2)⇒ Σ2

Γ;Σ ` M1 M2 : τ ′, (r1 t rf , w1 u w2 u wf )⇒ Σ3

Figure 2: Type and Effect system

Direct leaks, like the ones in programs (1), (2), (4) and (5), are handled
by the check r2(Σ

′′) � p in the rule for assignment. Since we normalise the
policy r2 of the assignee to the state in effect at the point of the assignment,
program (5) would be secure if run in a state where σ is open, which is
exactly what happens in programs (6) and (7). Also the normalisation to
the current state in the dereferencing rule, i.e. p(Σ′) in the reading effect of
the conclusion, means that program (8) will be deemed secure. The same
kind of normalisation also appears in the variable rule.

The check r0(Σ
′) � w1 u w2 in the conditional rule will ensure that an

indirect leak like the one in (9) will not be allowed. The normalisation of r0

to Σ′ means that it is the state at the branch point that is important, which
disallows (10) and (11) but lets (12) through. The branches may open and
close different locks, so the end states can differ. Since policies are monotonic,
we can use the intersection of the end states as a safe approximation for the
following program.
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The checks r1(Σ
′′) � p in the assignment rule, and the corresponding

r1(Σ2) � wf in the application rule handle indirect flows like in (13), (14)
and (16), but allow (15) and (17).

In the assignment rule, the reading effect in the conclusion is ⊥. The
reason is that the result of an assignment is always (), independent of the
result values of the two expressions M1 and M2, so no information is leaked
by making the () result public. For similar reasons, r2 does not show up in
the reading effect in the conclusion of the application rule. Since function
arguments are annotated with their reading effects, if the result of M2 has
any effect on the result of the whole application expression, this fact will be
seen through rf .

4

4 Semantic Security Properties

In this section we define the semantic security property appropriate for flow
locks, and outline the proof that the flow lock type system does indeed satisfy
this property.

4.1 coreFL

The first observation we make, which we will explain in more depth in section
4.5, is that the λFL language and the given substitution semantics are not
well suited when defining the semantic security property. In order to assert
the properties we require, we need to be able to reason about values resulting
from evaluating each subterm, and λFL does not give us the means to do this.

To this end we define a monadic core language, coreFL, defined in figure
3. The main difference from λFL is that we have made sequential compu-
tation explicit in the language by the introduction of a bind construct. All
other terms in the language have been syntactically restricted to contain no
subterms other than variables in positions suited for reduction. Another dif-
ference is that variables are now annotated with a policy and a type, just like
locations. This means that references need not be typed since their type is
given by the annotion on the variable argument. We use boldface metavari-
ables x, y etc., to range over policy- and type- annotated variables of the
form xp,τ , yp′,τ ′ .

4 The rules involving functions are fairly restrictive as they are formulated here. One
could easily imagine various forms of subsumption, both for lock states and argument
policies, that would make the system less restrictive. However, adding subsumption would
complicate the overall formulation of the type system, so we leave it for now.
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Annotated variables x ::= xp,τ

Values and types: v ::= n | b | () | λx.M | `p,τ

τ ::= int | bool | unit | (τ, p)
Σ,p,p,Σ−−−−→ τ | ref p τ

Terms: M ::= v | x | x y | if x then M else M | rec x.v
| refp x | !x | x := y | open σ | close σ
| bind x = M in M

Figure 3: The coreFL language

4.2 Semantics

The semantics for coreFL, presented in figure 4, and is given by single-step
labelled transitions of the form

〈Σ, M, S〉 p→ 〈Σ′, N, S ′〉

where

• Σ is the set of flow locks currently open,

• M is the term being computed,

• S is the store: a finite mapping from annotated values and locations
to coreFL values.

• p records the policy relating to any store access that that takes place
during that step (and is simply > if there is no memory access in that
step).

We assume the usual well-formedness conditions for configurations 〈Σ, M, S〉,
namely that the free variables and the locations in M and in the range of S
are in the domain of S.

We will write 〈Σ, M, S〉 → 〈Σ′, N, S ′〉 to mean ∃p.〈Σ, M, S〉 p→ 〈Σ′, N, S ′〉,
and 〈Σ, M, S〉 ⇑ to mean that the configuration diverges – i.e. can be reduced
indefinitely

〈Σ, M, S〉 → 〈Σ0, N0, S0〉 → · · · → 〈Σi, Ni, Si〉 → · · ·
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〈Σ, xp,τ , S〉
p→ 〈Σ, S(xp,τ ), S〉

〈Σ, ref xp,τ , S〉
>→ 〈Σ, `p,τ , S[`p,τ 7→ S(xp,τ )]〉 `p,τ /∈ dom(S)

〈Σ, !xp,τ , S〉
pup′→ 〈Σ, S(S(xp,τ )), S〉 where S(xp,τ ) = `p′,τ ′

〈Σ,x := y, S〉 >→ 〈Σ, (), S[S(x) 7→ S(y)]〉
〈Σ, if xp,τ then M0 else M1, S〉

p→ 〈Σ, M0, S〉 if S(xp,τ ) = true

〈Σ, if xp,τ then M0 else M1, S〉
p→ 〈Σ, M1, S〉 if S(xp,τ ) = false

〈Σ, xp,τ y, S〉 p→ 〈Σ, M [y/z], S〉 where S(xp,τ ) = λz.M , z fresh

〈Σ,open σ, S〉 >→ 〈Σ ∪ {σ}, (), S〉

〈Σ, close σ, S〉 >→ 〈Σ \ {σ}, (), S〉

〈Σ, rec x.v, S〉 >→ 〈Σ, v, S[x 7→ v]〉

〈Σ,bind x = v in M, S〉 >→ 〈Σ, M, S[x 7→ v]〉 x /∈ dom(S)

〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉
〈Σ,bind x = M in N, S〉 p→ 〈Σ′,bind x = M ′ in N, S ′〉

Figure 4: Store-based semantics for coreFL
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Σ ` n : int, (⊥,>)⇒ Σ Σ ` b : bool, (⊥,>)⇒ Σ

Σ ` `p,τ : ref p τ , (⊥,>)⇒ Σ Σ ` () : unit, (⊥,>)⇒ Σ

∆ ` M : τ, (rf , wf )⇒ ∆′

Σ ` λxp′,τ ′ .M : (τ ′, p′)
∆,rf ,wf ,∆′

−−−−−−−→ τ , (⊥,>)⇒ Σ
Σ ` xp,τ : τ, (p(Σ),>)⇒ Σ

Σ ` open σ : unit, (⊥,>)⇒ Σ ∪ {σ} Σ ` close σ : unit, (⊥,>)⇒ Σ \ {σ}

Σ ` v : τ, (⊥,>)⇒ Σ
Σ ` rec x⊥,τ .v : τ, (⊥,>)⇒ Σ

p(Σ) � p′

Σ ` refp′ xp,τ : refp′ τ , (⊥, p′)⇒ Σ Σ ` !xp,ref p′ τ : τ, (p(Σ) t p′(Σ),>)⇒ Σ

p(Σ′′) t p′(Σ′′) � p′′

Σ ` xp,ref p′′ τ := yp′,τ ′ : unit, (⊥, p′′)⇒ Σ

Σ′ ` Mi : τ, (ri, wi)⇒ Σ′ p(Σ) � w0 u w1

Σ ` if xp,bool then M0 else M1 : τ, (r0 t r1 t p(Σ), w0 u w1)⇒ Σ′

p(Σ) � wf

Σ ` xp,τf
yp′,τ ′ : τ, (p(Σ) t rf , wf )⇒ Σ′ where τf = (τ ′, p′)

Σ,rf ,wf ,Σ′

−−−−−−−→ τ

Σ ` M0 : τ, (r0, w0)⇒ Σ′ Σ′ ` M1 : τ ′, (r1, w1)⇒ Σ′′ r0(Σ′) � p

Σ ` bind xp,τ = M0 in M1 : τ ′, (r1, w0 u w1)⇒ Σ′′

Figure 5: Specialized Type and Effect system for COREFL

4.3 Type System for coreFL

The type system for λFL is valid also for coreFL terms with the addition of a
typing rule for the bind construct. However, since coreFL terms are simpler
than their λFL counterparts, we can specialise the type rules for coreFL

terms, and use the simpler formulations to good effect in our proofs. The
result of this specialisation can be found in figure 5. Note that the type
environment is now redundant since each variable carries its type.

We can establish some standard properties relating well-typed programs
and reduction: progress, which says that well-typed programs do not get
“stuck”, and preservation (subject reduction), which says roughly that well-
typed terms reduce to well-typed terms. We simply state these properties as
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lemmas here while the proofs are given in appendix A.1.

Lemma 1 (Progress). If Σ ` M : τ, (r, w)⇒ ∆ then either

• M ∈ Val, or

• for all S such that dom(S) ⊇ fv(M) ∪ loc(M) and ` S
then ∃Σ′, M ′, S ′.〈Σ, M, S〉 → 〈Σ′, M ′, S ′〉.

Lemma 2 (Preservation). If Σ ` M : τ, (r, w)⇒ ∆ and ` S and dom(S) ⊇
fv(M) ∪ loc(M) and 〈Σ, M, S〉 → 〈Σ′, M ′, S ′〉 then ` S ′ and Σ′ ` M ′ :
τ, (r′, w′)⇒ ∆ where r′ � r and w � w′.

4.4 Semantic security property

To prove standard noninterference one needs to show that the observable be-
haviour of a program, from the perspective of a given actor, does not change
when the values of secrets (things not readable by that actor) are changed.
At the top level we may settle for a notion of “observable behaviour” to mean
the results of computations — the final state or values.

In the next section we will show that our notion of flow lock security
does indeed imply a standard noninterference property. However, since we
have dynamic policies we are forced to consider the intermediate states of a
computation, because it is at such state that the policy may change.

Visibility An actor α can directly observe the contents of a memory loca-
tion `p,τ in lock state Σ, when there is a clause Σ′⇒α ∈ p such that Σ′ ⊆ Σ,
or equivalently, when {}⇒α ∈ p(Σ). In this case we sometimes say that α
can see p at Σ. This kind of property is used often, so we introduce some
specific notations:

Definition 1 (Visibility).

α ·̂ p
def
= ({}⇒α) ∈ p (α can see p)

α 6 ·̂ p def
= ¬(α ·̂ p) (α can’t see p)

α 6 ·̂Ωp
def
= ∀Θ.α 6 ·̂ p(Θ \ Ω) (α can’t see p without Ω)

guardsα(p)
def
=

{
{{}} if α ·̂ p
{Φ | Φ ⇒ α ∈ p} otherwise

(The guards of α in p)

The last of these definitions, the guards of an actor α in policy p, definies
the sets of locks which have an influence on the visibility of the policy to α.
We can connect the guards of a policy and its visibility through the following
lemma:
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Lemma 3 (Guard lemma). If α 6 ·̂p, then α 6 ·̂Ωp where Ω =
⋃

guardsα(p).

The proof of this lemma can be found in appendix A.2
For the visibility operators we note that the α ·̂ p relation is anti-

monotonic in its policy argument, i.e.

α ·̂ p & p′ � p =⇒ α ·̂ p′

Clearly α 6 ·̂ p and α 6 ·̂Ωp are then monotonic. Also α 6 ·̂Ωp is monotonic in its
lock-set argument, i.e.

α 6 ·̂Ωp & Ω′ ⊇ Ω =⇒ α 6 ·̂Ω′
p

Actor indistinguishable stores In order to charactersise when informa-
tion has leaked we first need to characterise when two stores are indistin-
guishable for a given actor. In order to do this we need to take into account
which locks are open. Once we know wich locks are open we can compute
which parts of the store are visible to the actor.

Definition 2 (α-indistinguishable stores =Θ
α ). Define two stores S and T

to be indistinguishable by α at lock state Θ, written S =Θ
α T , if the location

domains of S and T are the same, and for all policies p such that α ·̂ p(Θ),

1. for all locations `p,τ in S and T we have S(`p,τ ) = T (`p,τ ), and

2. for all variables xp,τ ∈ dom(S) ∩ dom(T ) we have S(xp,τ ) = T (xp,τ ).

The definition asserts the equality, in S and T respectively, of locations
`p,τ and variables xp,τ which are visible to actor α at lock state Θ. The
stronger requirement on locations – that S and T have the same locations
– is due to the fact that locations are first class values that can be passed
around and inspected, and their values can be updated, so an actor can
potentially observe the presence or absence of a given memory location in a
store. Variables on the other hand can never be observed directly.

The relation =Θ
α is not transitive in general since the domains may vary

freely in the parts that deal with variables. As an example of this we could
have {x⊥,τ 7→ v} =Θ

α {} and {x⊥,τ 7→ v′} =Θ
α {}, but clearly not {x⊥,τ 7→

v} =Θ
α {x⊥,τ 7→ v′}.

However, we are going to need to argue about transitivity in our proofs,
so we need to assert that transitivity holds for a certain domain of memories.
In particular we can show that S =Θ

α S ′ and S =Θ
α T gives S ′ =Θ

α T , assuming
that dom(S ′)\dom(S) ∩ dom(T ) = {}. We would then have that dom(S ′) ∩
dom(T ) ⊆ dom(S) ∩ dom(T ), and thus for all variables xp,τ ∈ dom(S ′) ∩
dom(T ) we have S ′(xp,τ ) = T (xp,τ ) as required.
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Whenever we argue transitivity in our proofs, we implicitly mean this
restricted form, but the condition on domains will always be true in the
contexts where we use it.

Flow lock security Our definition of flow-lock security follows the “self-
bisimulation” approach from [17], whereby security is characterised by a more
general property of two programs being bisimilar with respect the the observ-
able parts of memory. One particular feature of the definition from [17] is that
the bisimulation is defined over programs and not configurations (program-
memory pairs). The idea is that at each step of the bisimulation the pair
of programs under comparison are inspected in all pairs of memory states
which are indistinguishable to the attacker. This very strong requirement
was needed to make the definition of security compositional with respect to
parallel composition. But this approach of “resetting” the store at each step
has another very useful property: it enables us to reset the state in the event
of a policy change. For example, one particular difficulty is that when the
current policy becomes more restrictive — in our case when locks are closed
— then we need a way to reestablish a stronger security requirement at that
point in the execution. It is notable that two previous semantic accounts of
temporary policy weakening mechanisms, Mantel and Sands’s language based
intransitive noninterference condition [8], and Almeida Matos and Boudol’s
nondisclosure policy [2], both rely on such a “resetting” bisimulation not
only to deal with threads, but more importantly to provide a semantics to
local policy change mechanisms. Our definition is close in spirit to Almeida
Matos and Boudol’s definition, although our less structured (more general)
policy-change mechanism creates additional problems.

Without further ado, we now provide the definition of bisimulation upon
which our notion of security is based.

Definition 3 (∼Ω
α). For any actor α let {∼Ω

α} be the lock-set indexed family
(i.e. Ω is a set of locks) of relations defined to be the largest symmetric
relations on preconfigurations (lockstate-term pairs) such that if

〈Σ, M〉 ∼Ω
α 〈∆, N〉 & 〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉

& Θ ⊇ Σ & S =Θ
α T & dom(S ′)\dom(S) ∩ dom(T ) = {}

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S ′ =
Θ\Ω
α T ′ & 〈Σ′, M ′〉 ∼Ω′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))
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Now we can state that a program is secure if and only if it is bisimilar to
itself:

Definition 4 (Flow-lock security). We say that a term M is flow-lock

secure, written M ∈ FL, if and only if 〈{}, M〉 ∼{}
α 〈{}, M〉

4.5 The bisimulation definition explained

We will try to explain our definition using a sequence of “attempts”, each of
which introduces parts of the final solution. These are:

1. Bisimulation up to nontermination – adding termination insensitivity
to a configuration-level bisimulation-based noninterference condition.

2. A location-resetting bisimulation – adding lock states to the bisimula-
tion, and motivating the “resetting” style of bisimulation.

3. A store-resetting bisimulation – motivating why we have to reset not
only the locations but also the variables

4. Future-sensitive bisimulation – why we have to quantify over all lock
states which include the current lock state;

5. Past-sensitive bisimulation – why we have to add the lockset Ω.

Let us begin with a view of an attacker (an actor) who can observe in-
termediate states of computation, but not the speed of computation. Let
us further suppose a simple semantics without lockstate, and in which the
state is just a mapping for locations (ranged over by µ and ν), and that there
are no free variables in the term (i.e. we have a suubstitution semantics).
Intuitively, any program when run with two inputs which are indistinguish-
able to an actor should produce intermediate states indistinguishable to that
actor. With no flow locks and only static policies, a possible bisimulation
formulation could be of the form:

Attempt 1 (Bisimulation up to nontermination). For any actor α,
define ∼α to be the largest symmetric relation such that if 〈M, µ〉 ∼α 〈N, ν〉
then µ =α ν, and if 〈M, µ〉 → 〈M ′, µ′〉 then there exists N ′, ν ′ such that
either 〈N, ν〉 →∗ 〈N ′, ν ′〉 and 〈M ′, µ′〉 ∼α 〈N ′, ν ′〉, or 〈N, ν〉 ⇑.

We use here the obvious notion of low-equivalence of stores, =α, which
ensures that we start with inputs that do not differ in the public parts, i.e.
locations visible to α. To match a single computation step from the first
configuration we can take zero or more steps. This makes the definition
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insensitive to timing issues. The divergence clause is added simply to make
the definition termination insensitive, so that we cannot (by choice) detect
leaks which are encoded in the termination behaviour alone.

This definition is clearly inadequate in the presence of locks. Our next
step is to observe that we need to define the bisimulation relation over 〈Σ, M〉
pairs, which we call preconfigurations. This is because in order to characterise
which states are indistinguishable to a given actor α we need to know the
lock state. With dynamic policies we need to take into account the fact that
when the policy changes, memory locations that were previously considered
secret could now be public, and vice versa. We handle this, as mentioned
previously, by resetting the memory at each computation step. This brings
us to our second attempt:

Attempt 2 (Memory-resetting bisimulation). For any actor α, define
∼α to be the largest symmetric relation on preconfigurations such that if

〈Σ, M〉 ∼α 〈∆, N〉 & 〈Σ, M, µ〉 p→ 〈Σ′, M ′, µ′〉 & µ =Σ
α ν

then there exists ∆′, N ′, ν ′ such that

either 〈∆, N, ν〉 →∗ 〈∆′, N ′, ν ′〉 & µ′ =Σ
α ν ′ & 〈Σ′, M ′〉 ∼α 〈∆′, N ′〉,

or 〈∆, N, ν〉 ⇑,

This definition is somewhat similar in spirit to non-disclosure [2]. For
the moment we still view stores as containing memory locations only, and
thus assume a semantics which avoids free variables altogether. This attempt
takes into account that the effective secrecy status of memory locations can
change during program execution, but this is not enough. In this rich lan-
guage it is also possible to do the same for values that have been computed
in the term, as shown by program (16) in section 3:

(!`{σ⇒A}) := (open σ; ())

In this example, we first compute a value on the left-hand side, which will
be given the reading policy {σ⇒A}). From the point of view of A, this
is a secret value, and could thus be different values in different runs of the
program. However, when we compute the right-hand side, the value on the
left-hand side is declassified, though it can still be different values in different
runs, which means we could have an α-observable difference in the output of
the two programs. This difference is fine though, since we explicitly changed
the state to allow the flow to α, but we must still ensure that there are no
other observable differences that do not arise from the newly opened lock.
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To check this, we want to continue the bisimulation but assume that we in
fact had the same value on the left-hand side, and continue as before. This
is the same thing that we do when “resetting” the memories, but we need
to do the same thing for values in the term. In order to do this for values,
we need a handle on those values, which is the motivation behind using the
monadic coreFL language and the store-based operational semantics. Thus
we arrive at our third attempt:

Attempt 3 (Store-resetting bisimulation). For any actor α, define ∼α

to be the largest symmetric relation on preconfigurations such that if

〈Σ, M〉 ∼α 〈∆, N〉 & 〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉
& S =Σ

α T where dom(S ′)\dom(S) ∩ dom(T ) = {}

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S ′ =Σ
α T ′ & 〈Σ′, M ′〉 ∼α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

The main difference from the previous attempt is not in the formulation
itself, but rather in the use of stores S and T ranging over both variables
and locations instead of memories µ and ν, and the corresponding different
formulation of the =Σ

α relation.

The condition dom(S ′)\dom(S)∩dom(T ) = {} is just a hygiene condition
that states that new variables introduced in S ′ are chosen to be distinct from
the variables already present in T . Since the operational semantics is free
to choose any locations this is not a restriction per se. In the “attempts”
that follow we will tacitly elide this hygiene condition, but it is needed in all
cases.

This definition of bisimulation is still not strong enough. It is not enough
to require only that memories should be α-indistinguishable in the current
state. A program such as `{σ⇒A} := !m{σ′⇒A} is not secure (unless σ′ is
open), but with the above definition both locations would be considered
unobservable by α, and hence no α-observable differences could be observed.
The problem is that this insecure flow might only be revealed at some future
time. To capture this problem we need to check the α-indistinguishability of
the two memories in a state where σ is open but σ′ is not. More generally,
we must take into account all possible (more permissive) future lock states.
Thus our fourth attempt at a definition is:
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Attempt 4 (Future-sensitive bisimulation). For any actor α, define ∼α

to be the largest symmetric relation on preconfigurations such that if

〈Σ, M〉 ∼α 〈∆, N〉 & 〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉 & Θ ⊇ Σ & S =Θ
α T

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S ′ =Θ
α T ′ & 〈Σ′, M ′〉 ∼α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

Now we will rule out programs like the one above, but we’re still not quite
there. The final problem is that the definition is now actually too strong – it
rules out some (well-typed) programs that should be considered secure, such
as (somewhat simplified)

if x{σ⇒α},τ then `{σ⇒α} := 0 else ().

The indirect flow from x to ` should be fine since they have the same policy,
but since x is considered secret to α, the above definition requires us to show
(after one computation step) that 〈{}, `{σ⇒α} := 0〉 ∼α 〈{}, ()〉, which clearly
does not hold ∀Θ ⊇ Σ; in particular it will not hold when σ ∈ Θ.

The problem is that opening σ means that the condition that we branched
on becomes visible to α as well, but we’ve passed that point in the program
and don’t have access to the condition any more. To be sure we don’t rule out
programs such as these we must remember what branches we have taken, and
in particular what possible future states that could make any of the branches
visible to α, and make sure that we ignore leaks in those states. Thus our fifth
and final attempt is formulated by parameterising the bisimulation relation
by the set of locks that were closed at earlier branching points, to ensure that
we are not future-sensitive to these locks.

Attempt 5 (Past-aware bisimulation). For any actor α let {∼Ω
α} be

the lock-set indexed family of relations defined to be the largest symmetric
relations on preconfigurarions such that if

〈Σ, M〉 ∼Ω
α 〈∆, N〉 & 〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉 & Θ ⊇ Σ & S =Θ

α T

then there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & S ′ =
Θ\Ω
α T ′ & 〈Σ′, M ′〉 ∼Ω′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))
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The difference to the previous attempt is that we allow stores to differ
after computation as long as those differences are only visible in certain states
— in particular those states in which a previous branching point would not
have led to a branch at all.

This definition is less restrictive than the former in order to not rule out
programs with indirect flows like the one presented above. There might be
some concern as to whether this definition is now too weak, since we allow
stores to differ in certain states. In particular, what of a direct leak observ-
able only in such a state, like in the program if x{σ⇒α},τ then `{σ⇒α} :=
y>,τ ′ else (). This leak will indeed not be caught when we are working with

Ω = {σ}, so we have 〈{}, `{σ⇒α} := y>,τ ′〉 ∼{σ}
α 〈{}, ()〉. But recall that

we still quantify over all Θ ⊇ {} when considering the conditional expres-
sion. Then for any Θ ⊇ {σ} the variable whose value we branch on will
be considered public, and we will continue with the same branch in both
cases. Also since the variable was public, there will be no states in which
we allow future memories to differ in what α can see, and we must have
〈{}, `{σ⇒α} := y>,τ ′〉 ∼{}

α 〈{}, `{σ⇒α} := y>,τ ′〉 which cannot hold.

This fifth attempt is our actual definition of a bisimulation.

4.6 Non-circular reasoning for bisimulation

As the sharp-eyed reader may well have noticed, our notion of a bisimulation
implicitly constrains the stores used to be well-typed, i.e. if a location or
variable is said to hold an integer value, it does indeed hold an integer value.
This is not an unreasonable assumption to make in general, and since we
reset the stores before each computation step and require the bisimulation
properties to be fulfilled for any stores that are equal, it is an assumption
that is crucial for this to work at all. It would be impossible for all but the
simplest programs to be considered secure otherwise.

But unfortunately this assumption leads to a circular reasoning when
we want to prove that our type system guarantees flow lock security. We
allow the store to contain not only simple values like ints, but also functions
with arbitrary terms as their bodies. In order to show that such a value is
well-typed we need to use the full power of the type system.

Thus we end up in a situation where we want to show that well-typed
terms are bisimilar to themselves, but the notion of bisimilarity already de-
pends on the type system. To break this loop we can give a more general
definition of a bisimulation where we parametrise the relation on some well-
formedness predicate on stores:
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Attempt 6 (Parametrised bisimulation). For any actor α, let ∼Ω
α be

the lock-set indexed family of relations defined to be the largest symmetric
relations on preconfigurations such that if

〈Σ, M〉 ∼Ω
α 〈∆, N〉 & P(S) & 〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉

& P(S ′) & Θ ⊇ Σ & S =Θ
α T & P(T )

then there exits ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & P(T ′)

& S ′ =
Θ\Ω
α T ′ & 〈Σ′, M ′〉 ∼Ω′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

We would then prove that well-typed terms are bisimilar to themselves,
assuming they start off in well-typed, well-formed stores, i.e. P(S) = ` S.
Subject reduction gives us that the typeability of stores is retained, so this
would not complicate the proofs the least.

This is the complete, most general definition of a bisimulation. The pre-
vious definition, which we actually use, can be seen as an instantiation of
this definition for the proper P , and we will use that one for simplicity.

4.7 Well-typed Programs are Flow-Lock Secure

We now want to prove that all programs typeable with our type system are
indeed secure. The proof follows a similar structure to the corresponding
proof from Almeida Matos and Boudol [2].

The basic approach is to utilise the coinductive nature of the bisimulation
definition. We show that for well-typed closed M , 〈∅, M〉 ∼α 〈∅, M〉 by
construction of a candidate relation Rα

α, that in particular contains the pair
(〈∅, M〉, 〈∅, M〉), and which can be shown to be an α-bisimulation. This gives
us that (〈∅, M〉, 〈∅, M〉) ∈ Rα

α ⊆ ∼α.
To be able to define the candidate relation RΩ

α we need the notion of
programs that are high with respect to some actor α. We say that a program
is α-Ω-high if it does not modify any locations that α could see while all the
locks in Ω remains closed. However, this operational notion of being high
is a bit akward to work with, so instead we use a stronger, syntactic notion
stating that a program is syntactically α-Ω-high if it does not write to any
locations that α could see while the locks in Ω remain closed.
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Definition 5 (Syntactically α-Ω-high programs: HΩ
α ). Let HΩ

α be the
set of all terms M such that Σ ` M : τ, (r, w)⇒ Σ′ and α 6 ·̂Ωw.

Now we can define our candidate relation:

Definition 6 (Candidate relation RΩ
α). Let RΩ

α be a symmetric relation
on well-typed preconfigurations, inductively defined as follows:

1
〈Σ, M〉RΩ

α〈∆, M〉
2

M, N ∈ HΩ
α

〈Σ, M〉RΩ
α〈∆, N〉

3
〈Σ, M〉RΩ

α〈Σ, N〉 α 6 ·̂Ωp

〈Σ, E[bind xp,τ = M in M ′]〉RΩ
α〈∆, E[bind xp,τ = N in M ′]〉

where E[·] are the evaluation contexts for coreFL, given by

E[·] ::= [·] | bind x = E[·] in M

In words, two well-typed preconfigurations are related by RΩ
α if the pro-

grams in them are either equal, both are high, or they are two sub-programs
related by RΩ

α inside nested (equal) bind constructs, where the results of
those sub-computations are secret to α. The lock-state components con-
strain what preconfigurations are in the relation only through the typeability
requirement.

The final piece of the puzzle is now to show that this candidate relation
is indeed a bisimulation.

Lemma 4 (
⋃
Ω

RΩ
α is a bisimulation). If 〈Σ, M〉RΩ

α〈∆, N〉 and ` S and

〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉 & Θ ⊇ Σ & S =Θ
α T & ` T

then ` S ′, and there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & ` T ′

& S ′ =
Θ\Ω
α T ′ & 〈Σ′, M ′〉RΩ′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

We prove this by induction on the size of the typing derivation of 〈Σ, M〉.
The details of this proof can be found in appendix A.2.
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5 Relating to Other Systems and Idioms

Standard Noninterference As a first example of the expressiveness of
our system, consider a standard termination insensitive noninterference prop-
erty for a lattice-based security model in the standard Denning style [6].

In this setting we have a lattice of security levels 〈L,v,t〉, and a policy
level : Loc → L that fixes the intended security level of the storage locations
in the program (and of variables). Given such a policy we can define nonin-
terference. To do this let us first assume that all policies are made up of sets
of clauses of the form {}⇒α, and that programs do not use lock open/close
operations. Furthermore, for simplicity we consider programs of unit type
which do not perform any allocation of new references (locations). In what
follows let metavariables P and Q range over such programs.

Definition 7 (Noninterference). Given two stores S and T , and a level
k ∈ L, define S and T to be location indistinguishable at level k, written
S =k T , iff the location domains of S and T are the same, and for all
` ∈ dom(S) such that level(`) v k we have S(`) = T (`).

Then we say that variable-free program P is noninterfering if for all k,
whenever 〈P, S〉 →∗ 〈(), S ′〉, and 〈P, T 〉 →∗ 〈(), T ′〉, then S =k T implies
S ′ =k T ′.

To represent a lattice policy we do not need any locks; we represent the
reading level of a variable by the set of levels at which it may be read. Thus
the policy for a storage location ` is the upwards closure of its lattice level,
written ↑level(`), where ↑k = {{}⇒ j | j w k}.

In what follows we will implicitly identify lattice levels k with the corre-
sponding flow lock policy ↑k

Given this, we have the following:

Theorem 1. If P is flow lock secure then P is noninterfering.

The details of the proof are given in Appendix A.3.

But it is perhaps not too surprising that our security specification is
stronger than standard noninterference. A reasonable concern might be that
the definition, or indeed the type system, is too strong to be useful. Here we
show that despite being stronger, we are still able to type just as much as
“typical” systems for regular noninterference.

Figure 6 presents a simple type system for a while language which can
be seen as a straightforward reformulation of the typing system presented by
Volpano, Irvine and Smith [21].
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p =
⊔

`∈E level(`).

ǸI E : p
ǸI E : q p t q v level(`)

p ǸI u := E

p ǸI C1 p ǸI C2

p ǸI C1; C2

ǸI E : q p t q ǸI Ci i = 1, 2

p ǸI if E then C1 else C2

ǸI E : q p t q ǸI C

p ǸI while (E) C

Figure 6: Standard Noninterference Type System

Define the following translation d·e from terms in the while language to λFL:

dwhile (E) Ce = rec x.if dEe then dCe; x else ()

dif E then C1 else C2e = if dEe then dC1e else dC2e
dC1; C2e = dC1e; dC2e
d` := Ee = `p := dEe where p = ↑level(`)

dEe = E ′ where E ′ is the result of replacing

each location ` in E with `↑level(`).

To make our formulations easier, let us restrict the language of expressions
to booleans (so we do not have to consider typing issues). Now we can state
that whenever something is typeable in the simple noninterference system, a
corresponding derivation holds for the flow locks system:

Theorem 2. Let Γ0 be the type environment that maps every storage location
to bool . Then

1. If ǸI E : k then Γ0; ∅ ` dEe : bool , (r,>)⇒ ∅ where r = ↑k

2. If pc ǸI C then Γ0; ∅ ` dCe : unit , (r, w)⇒ ∅ where w ⊆ ↑pc

We also expect that a similar theorem holds for some suitable termination-
insensitive version of DCC [1], although we have not attempted to show this
formally.

Simple Declassification We can encode a simple declassification mecha-
nism in the same Denning-style setting as used in the previous example. The
needed extra step is to extend all policies with clauses to allow declassifica-
tion. For each level j not in the policy already, we introduce a flow lock σj

representing a declassification to that level. The new policies then look like

{k | k w level(`)} ∪ {σj ⇒ k | j 6w level(`), k w j}
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We can now define a declassification operator to level j as

declassify j ≡ (λv.let x = (open σj; v) in (close σj; x))

It is easy to verify from the type system that the only effect of applying this
function to some value is that the value will then be readable also at level j,
as was our intention.

Lexically Scoped Flows In the setting of a multilevel security model,
Almeida Matos and Boudol describe how to build a system with lexically
scoped dynamic flow policies [2]. They start from a λ-calculus with recursion
and references like we do, and introduce a construct “flow α ≺ β in M” that
extends the current global flow policy to also allow flows from level α to β
in the scope of M. These flows are transitive, so if the current policy already
allows flows from say β to γ, flows from α to γ would also be allowed in M.

Modelling scoped flows using flow locks is easy, but the global nature
of policies in Almeida Matos and Boudol’s system, as opposed to our local
policies on memory locations, needs special treatment. We introduce a lock
σα≺β for each pair of levels α and β that data could flow between. Each
policy on some data must record the fact that a future flow declaration could
allow that data to flow to many new locations due to the transitive nature of
flows. Thus if a location in Almeida Matos and Boudol’s system would have
level A, we could represent that as

A ∪
{
σα≺β0 , σβ0≺β1 , . . . , σβk−1≺βk

⇒ βk | α ∈ A, βi /∈ A
}

where the /∈ is taken with respect to some universal set of levels. In effect,
each location records all possible future transitive flows from it. We then
derive our representation of the “flow” construct that opens a lock in the
scope of some subprogram:

flow σ in M ≡ let x = (open σ; M) in (close σ; x)

Almeida Matos and Boudol also include parallel execution in their sys-
tem, and as a consequence make their type system and semantic security
definition, called non-disclosure, sensitive to possible non-termination. Our
system has no parallel execution so we cannot model their full system, only
the sequential subset.

Intransitive Noninterference Flow locks represent a lower level abstrac-
tion than lattice-based information flow models in the sense that the lattice
ordering is not “built in” but must be represented explicitly. One advantage
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of such a lower level view is that it can also represent intransitive noninter-
ference policies [15, 14] — i.e. ones in which the flow relation is intentionally
not transitive. Since intransitive policies are the default case for flow locks,
it is straightforward to represent simple language-based intransitive policies
such as the one described by Mantel and Sands [8].

Noninterference Until Declassification Chong and Myers’ [5] intro-
duce a class of temporal declassification policies. This is achieved by anno-
tating variables with types of the form k0

c1 · · · cn kn, which intuitively
means that a variable with such an annotation may be successively declassi-
fied to the levels k1, . . . , kn, and that the conditions c1, . . . , cn will hold at the
execution of the corresponding declassification points. The exact nature of
the conditions are left unspecified, and it is assumed in the type system that
these conditions are verified at certain key program points by some external
tool.

We can achieve a similar effect fairly naturally using flow locks, where we
would use a distinct lock Ci for each condition ci. One should then insert
open Ci constructs in the program at points where the intended declassifi-
cation takes place, and verify (with an external tool) that the corresponding
condition ci does indeed hold at these points, and that lock Ci−1 has been
opened (we assume that locks are never closed in this encoding). The policy
above could then be represented as

{k0; {C1}⇒ k1; · · · ; {C1, . . . , Cn}⇒ kn}.

Robust Declassification Information flow may be used to verify integrity
properties, to ensure that untrusted (low integrity) data does not influence
the values of trusted (high integrity) data. Since flow lock policies are neu-
tral with respect to whether we are dealing with confidentiality or integrity
properties it is no problem to add such integrity policies to data, and we
can easily have clauses for integrity and confidentiality in the same policy.
The interesting case, however, is the interaction between confidentiality and
integrity in the presence of dynamic policies.

Zdancewic and Myers [22] introduced the concept of robust declassifica-
tion to characterise the property that an attacker (who controls low integrity
data) cannot influence what is declassified. This guarantees that the attacker
cannot manipulate the amount of information which is released through de-
classification.

In the setting of flow lock policies, “declassification” can be thought of
as the process of opening locks, since whenever a lock is opened more flows
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are enabled. Thus we can interpret robust declassification as the question of
whether low integrity data can influence the decision to open locks. 5

One possible way of enforcing robust declassification using flow locks is to
observe the following: since we cannot perform any computation with locks,
the only way that an open operation can be influenced by low integrity data
is via indirect information flow from low integrity data. Suppose that our
policies use an indexed set of locks σi, i ∈ I to control confidentiality. These
are unguarded (i.e. we ignore endorsement). Let us assume that in addition
to the actors of the system we have the pseudo-actor trusted used to track
integrity information, just as we did in Section 2.

In order to prevent indirect flow from low integrity data to the opening
of locks, we will log each use of an open operation by writing to a variable
log . An obvious way to enforce this is to define a “robust” version of open:

ropen σi ≡ open σi; log := i

Now we give log the policy {trusted}. This ensures that the assignment
is always safe from a confidentiality perspective (since normal actors can
never read it anyway), and that the open operation can never have taken
place in a low integrity context (since otherwise the assignment would cause
information to flow from untrusted to trusted data). Finally, to additionally
prevent the declassification of low integrity data we can syntactically enforce
that lock-guarded policies are only used on high integrity data.

The Decentralized Label Model In the Decentralized Label Model (DLM)
[10, 11, 12], data is said to be owned by a set of principals. These principals
may allow other principals to read the data, and the effective reader set is
those principals that all owners agree may read the data. Allowing a new
reader roughly corresponds to declassification, and we can model it similarly.
The DLM also defines a global principal hierarchy, where one principal may
allow another principal to act for it, which means it may read all the same
things. This is very similar in spirit to introducing a new flow in the system
by Almeida Matos and Boudol, including transitivity, and we can model it
in the same way. Apart from clauses for declassification and hierarchic flows,
the policies must also include clauses for the combination of the two, e.g. A
can read the data if B owns it, has declassified it for C to read it, and A acts
for C.

A common extension of the DLM [22, 20, 19] deals with integrity and
trust. The interesting part for us is the integration with the principal hier-
archy, where if A trusts some data and A acts for B, then B also trusts that

5If we also take the view from [13], then we extend this concept with the requirement
that we should not be able to declassify low integrity data
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data. This can be modelled as the reverse of the normal clauses for transitive
flows, and the clauses will be very similar to those for forward flows.

The complete general policy for a DLM variable encoded with flow locks
would be fairly large and awkward, so we do not show it here.

Other Related Work The JFlow language [9], as well as several recent
papers [19, 23, 7], supports runtime mechanisms to enforce security in situ-
ations where this cannot be determined statically, e.g. permissions on a file
that cannot be known at compile time. Our flow locks is a static, compile-
time mechanism only, and thus cannot handle these issues.

Banerjee and Naumann [4] describe a combination of stack-based access
control and information flow types to allow the static checking of policies such
as “the method returns a result at level L unless the caller has permission
p”. It may be possible to encode these kinds of policies in a straightforward
way using flow locks, but this remains a topic for future work.

6 Conclusions and Future Work

Flow locks are a very simple mechanism that generalises many existing sys-
tems and idioms for dynamic information flow policies. We have only just
started looking at flow locks however, and much remains to be done.

To really establish flow locks as a core calculus, we need to show more
formally how to embed other systems and idioms, and prove that our se-
mantic condition is sufficiently strong compared to the semantic conditions
of these other systems. It would also be worthwhile to look at extensions of
our core system, in order to handle systems that we definitely cannot model
at this point. Examples of such systems include the parallel execution of
Almeida Matos and Boudol [2], and also systems that use various runtime
mechanisms [19, 23, 7].

Furthermore, we would need to investigate how to implement the flow
locks system as a programming language, and to determine what kinds of
inference would be needed for policies and locks. Also, flow locks are fairly
low-level in nature, being a raw mechanism for controlling data flows in a
program. As such it is nontrivial to write and maintain correct flow lock
programs. It would therefore be useful to look at what higher-level abstrac-
tions and design patterns that could be used together with flow locks. There
exists some work specifically targeting the question of patterns, for instance
the seal pattern by Askarov and Sabelfeld [3].
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A Appendix

A.1 Proofs that the type system guarantees semantic
soundness

Lemma 1 (Progress). If Σ ` M : τ, (r, w)⇒ ∆ then either

• M ∈ Val, or

• for all S such that dom(S) ⊇ fv(M) ∪ loc(M) and ` S
then ∃Σ′, M ′, S ′.〈Σ, M, S〉 → 〈Σ′, M ′, S ′〉.

Proof. In COREFL the syntax restricts the terms of the language to be in a
reductive form, except the bind construct. This is thus the only case for which
the lemma does not trivially hold. By induction on the size of the typing
derivation for M we get for the bind case from the induction hypothesis that
it holds for the bound expression, and thus it holds for M .

Lemma 2 (Preservation). If Σ ` M : τ, (r, w)⇒ ∆ and ` S and
dom(S) ⊇ fv(M) ∪ loc(M) and 〈Σ, M, S〉 → 〈Σ′, M ′, S ′〉, then ` S ′ and
Σ′ ` M ′ : τ, (r′, w′)⇒ ∆ where r′ � r and w � w′.

Proof. We prove this by induction on the typing derivation for M , and by
cases according to the structure of M .

Case: M ∈ Val. The statement is vacuously true.

Case: M = xp,τ . The reduction has the form 〈Σ, xp,τ , S〉 → 〈Σ, S(xp,τ ), S〉,
and the typing derivation is of the form Σ ` xp,τ : τ, (p(Σ),>)⇒ Σ. Since ` S
this means that Σ ` S(xp,τ ) : τ, (⊥,>)⇒ Σ. We have ⊥ � p(Σ) and > � >
as required.

Case: M = refp′ xp,τ . The reduction has the form

〈Σ, refp′ xp,τ , S〉 → 〈Σ, `p′,τ , S[`p′,τ 7→ S(xp,τ )]〉
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and the typing derivation is of the form

p � p′

Σ ` refp′ xp,τ : refp′ τ , (⊥, p′)⇒ Σ
.

Since ` S we have that Σ ` S(xp,τ ) : τ, (⊥,>)⇒ Σ, so we have
` S[`p′,τ 7→ S(xp,τ )] and Σ ` `p′,τ : refp′ τ , (⊥,>)⇒ Σ. We have ⊥ � ⊥ and
p′ � > as required.

Case: M =!xp,refp′ τ . The reduction has the form

〈Σ, !xp,refp′ τ , S〉 → 〈Σ, S(S(xp,τ )), S〉

and the typing derivation is of the form

Σ ` !xp,refp′ τ : τ, (p(Σ) t p′(Σ),>)⇒ Σ

. Since ` S this means that Σ ` S(xp,τ ) : refp′ τ , (⊥,>)⇒ Σ, and thus that
Σ ` S(S(xp,τ )) : τ, (⊥,>)⇒ Σ. We have ⊥ � p(Σ) t p′(Σ) and > � > as
required.

Case: M = xp,refp′′ τ := yp′,τ ′ . The reduction has the form

〈Σ, xp,refp′′ τ := yp′,τ ′ , S〉 → 〈Σ, (), S[S(xp,refp′′ τ 7→ S(yp′,τ ′)]〉

and the typing derivation has the form

p(Σ) t p′(Σ) � p′′

Σ ` xp,refp′′ τ := yp′,τ ′ : unit , (⊥, p′′)⇒ Σ
.

Since ` S this means that Σ ` S(xp,ref p′′ τ ) : refp′′ τ , (⊥,>)⇒ Σ, and that
Σ ` S(yp′,τ ′) : τ, (⊥,>)⇒ Σ, and thus we have that ` S[S(xp,refp′′ τ 7→ S(yp′,τ ′)].
We have Σ ` () : unit , (⊥,>)⇒ Σ, and ⊥ � ⊥ and p′′ � > as required.

Case: M = if xp,bool then M0 else M1. The reduction has the form

〈Σ, if xp,bool then M0 else M1, S〉 → 〈Σ, Mi, S〉

and the typing derivation is of the form

Σ ` Mi : τ, (ri, wi)⇒ ∆ p(Σ) � w0 u w1

Σ ` if xp,τ then M0 else M1 : τ, (p(Σ) t r0 t r1, w0 u w1)⇒ ∆
.

We have ri � p(Σ) t r0 t r1 and w0 u w1 � wi as required.
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Case: M = xp,τf
yp′,τ ′ where τf = (τ ′, p′)

Σ,rf ,wf ,Σ′

−−−−−−→ τ . The reduction has

the form
〈Σ, xp,τf

yp′,τ ′ , S〉 → 〈Σ, M, S[zp′,τ ′ 7→ S(yp′,τ ′)]〉,

where S(xp,τf
) = λzp′,τ ′ .M . The typing derivation is of the form

p(Σ) � wf

Σ ` xp,τf
yp′,τ ′ : τ, (p(Σ) t rf , wf )⇒ Σ′ .

Since ` S this means that

Σ ` M : τ, (rf , wf )⇒ Σ′

Σ ` λzp′,τ ′ .M : (τ ′, p′)
Σ,rf ,wf ,Σ′

−−−−−−→ τ , (⊥,>)⇒ Σ

and that Σ ` S(yp′,τ ′) : τ ′, (⊥,>)⇒ Σ, so we can show that
` S[zp′,τ ′ 7→ S(yp′,τ ′)]. We have rf � p(Σ) t rf and wf � wf as required.

Case: M = open σ. The reduction has the form

〈Σ,open σ, S〉 → 〈Σ ∪ {σ}, (), S〉

and by typing we know Σ ` open σ : unit , (⊥,>)⇒ Σ ∪ {σ}, and we can
show Σ ∪ {σ} ` () : unit , (⊥,>)⇒ Σ ∪ {σ}. We have ⊥ � ⊥ and > � > as
required.

Case: M = close σ. Similar to the previous case.

Case: M = bind xp,τ = M ′ in N . Here we have two cases: either M ′ ∈
Val, or we can do a reduction in M ′.

Subcase: M ′ = v. The reduction and type derivations respectively
have the form

〈Σ,bind xp,τ = v in N, S〉 → 〈Σ, N, S[xp,τ 7→ v]〉

Σ ` v : τ, (⊥,>)⇒ Σ Σ ` N : τ ′, (r, w)⇒ ∆

Σ ` bind xp,τ = v in N : τ ′, (r, w)⇒ ∆
.

We thus have ` S[xp,τ 7→ v], and r � r and w � w as required.

Subcase: M ′ /∈ Val. The type derivation for M must have the form

Σ ` M ′ : τ, (r′, w′)⇒ Σ′′ Σ′′ ` N : τ ′, (rN , wN)⇒ ∆ r′(Σ′′) � p

Σ ` bind xp,τ = M ′ in N : τ ′, (rN , w′ u wN)⇒ ∆
.
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and by progress that we can reduce M ′. We can thus perform the reduction
〈Σ, M ′, S〉 → 〈Σ′, M ′′, S ′〉, and by the induction hypothesis we know
Σ′ ` M ′′ : τ, (r′′, w′′)⇒ Σ′′ where r′′ � r′, w′ � w′′ and ` S ′. We can thus
show that

Σ′ ` M ′′ : τ, (r′′, w′′)⇒ Σ′′ Σ′′ ` N : τ ′, (rN , wN)⇒ ∆ r′′(Σ′′) � p

Σ ` bind xp,τ = M ′′ in N : τ ′, (rN , w′′ u wN)⇒ ∆
,

and we have rN � rN and w′ u wN � w′′ u wN as required.

A.2 Proof that Well-typed Programs are Flow-Lock
Secure

In this section we prove our claim that all programs typeable with our type
system are indeed secure.

The basic approach is to utilise the coinductive nature of the bisimulation
definition. We show that for well-typed closed M , 〈∅, M〉 ∼α 〈∅, M〉 by
construction of a candidate relation RΩ

α , that in particular contains the pair
(〈∅, M〉, 〈∅, M〉), and which can be shown to be an α-bisimulation. This gives
us that (〈∅, M〉, 〈∅, M〉) ∈ R∅

α ⊆ ∼α.

A.2.1 The candidate relation RΩ
α

To be able to define the candidate relation RΩ
α we need the notion of programs

that are high with respect to some actor α. (A similar concept is introduced
by Almeida Matos and Boudol [2]). We say that a program is α-Ω-high
if it does not modify any locations that α could see while all the locks in
Ω remain closed. However, this operational notion of being high is a bit
awkward to work with, so instead we use a stronger, syntactic notion stating
that a program is syntactically α-Ω-high if it does not write to any locations
that α could see while the locks in Ω remain closed.

Definition 5 (Syntactically α-Ω-high programs: HΩ
α ). Let HΩ

α be the
set of all terms M such that Σ ` M : τ, (r, w)⇒ Σ′ and α 6 ·̂Ωw.

Now we can define our candidate relation as follows:

Definition 6 (Candidate relation RΩ
α). Let RΩ

α be a symmetric relation
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on well-typed preconfigurations, inductively defined as follows:

1
〈Σ, M〉RΩ

α〈∆, M〉
2

M, N ∈ HΩ
α

〈Σ, M〉RΩ
α〈∆, N〉

3
〈Σ, M〉RΩ

α〈Σ, N〉 α 6 ·̂Ωp

〈Σ, E[bind xp,τ = M in M ′]〉RΩ
α〈∆, E[bind xp,τ = N in M ′]〉

where E[·] are the evaluation contexts for coreFL, given by

E[·] ::= [·] | bind x = E[·] in M

We can identify a useful property of this set, namely that if two pre-
configurations are related and one of the programs is high, then so is the
other.

Lemma 5 (RΩ
α relates high terms to other high terms). If

〈Σ, M〉RΩ
α〈∆, N〉 and M ∈ HΩ

α , then N ∈ HΩ
α .

Proof. By induction on the size of the typing derivation of M .
If 〈Σ, M〉RΩ

α〈∆, N〉 by rule 1, then M = N and we have N ∈ HΩ
α .

If 〈Σ, M〉RΩ
α〈∆, N〉 by rule 2, then N ∈ HΩ

α by construction.
If 〈Σ, M〉RΩ

α〈∆, N〉 by rule 3, then we have

M = E[bind xp,τ = M0 in M1] and N = E[bind xp,τ = N0 in M1],

where 〈Σ, M0〉RΩ
α〈∆, N0〉.

By typing we have
Σ ` M0 : τ, (r0, w0)⇒ Σ′ Σ′ ` M1 : τ ′, (r1, w1)⇒ Σ′′

Σ ` bind xp,τ = M0 in M1 : τ ′, (r1, w0 u w1)⇒ Σ′′ .

Since M ∈ HΩ
α we have α 6 ·̂Ωw0 u w1, which means that M0, M1 ∈ HΩ

α .
We apply the induction hypothesis on M0 to get that N0 ∈ HΩ

α , and thus
that bind xp,τ = N0 in M1 ∈ HΩ

α . Continuing the same argument for all
binds in E[], we get that N ∈ HΩ

α as required.

A.2.2 Proof that RΩ
α is a bisimulation

Now that we have our candidate relation, the final step is to prove that it is
indeed a bisimulation. In order to do this, we first need to state a number of
helper lemmas.

We begin by proving that syntactically high programs are also opera-
tionally high, i.e. that they never produce any α-observable changes to the
store. We do this in three separate steps. First we prove that syntactically
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high terms reduce to syntactically high terms. Second, we prove that reduc-
ing a syntactically high term will not result in any α-observable changes to
the store. Finally we put these two together to form a notion of uninterrupted
high computation.

Lemma 6 (HΩ
α is closed under reduction). If Σ ` M : τ, (r, w)⇒ ∆ and

α 6 ·̂Ωw and ` S and 〈Σ, M, S〉 → 〈Σ′, M ′, S ′〉 then ` S ′ and
Σ′ ` M ′ : τ, (r′, w′)⇒ ∆ and α 6 ·̂Ωw′.

Proof. Preservation gives us w � w′, so if α 6 ·̂Ωw then α 6 ·̂Ωw′.

Lemma 7 (HΩ
α is α-Ω-high).

If Σ ` M : τ, (r, w)⇒ ∆ and α 6 ·̂Ωw and ` S and 〈Σ, M, S〉 → 〈Σ′, M ′, S ′〉
then ∀Θ.S =

Θ\Ω
α S ′.

Proof. By induction on the size of the typing derivation. For terms that
do not update or create a location in the store when reduced, the above is
trivially true. The remaining cases are reference creation, assignment and
the recursive case of bind:

Case: M = refp′ xp,τ . In this case the reduction and typing derivation

are of the following form:

〈Σ, refp′ xp,τ , S〉 → 〈Σ, `p′,τ , S[`p′,τ 7→ S(xp,τ )]〉

p � p′

Σ ` refp′ xp,τ : ref p′ τ , (⊥, p′)⇒ ∆

and we know α 6 ·̂Ωp′. Thus the newly created location is secret to α, and we
have ∀Θ.S =

Θ\Ω
α S[`p′,τ 7→ S(xp,τ )].

Case: M = xp,ref p′′ τ := yp′,τ . The reduction and typing derivation have

the form

〈Σ, xp,ref p′′ τ := yp′,τ , S〉 → 〈Σ, (), S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )]〉

p(Σ) t p′(Σ) � p′′

Σ ` xp,ref p′′ τ := yp′,τ : unit , (⊥, p′′)⇒ Σ

and we know α 6 ·̂Ωp′′. Since ` S we know that

Σ ` S(xp,ref p′′ τ ) : ref p′′ τ , (⊥,>)⇒ Σ

and thus S =
Θ\Ω
α S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )].
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Case: M = bind xp,τ = M0 in N . If M0 ∈ Val the reduction step will

not change the value of any memory location so the conclusion trivially
holds. Otherwise we can apply the induction hypothesis on M0 to get that
if 〈Σ, M0, S〉 → 〈Σ′, M ′

0, S
′〉 then ∀Θ.S =

Θ\Ω
α S ′. From this we can con-

clude that if 〈Σ,bind xp,τ = M0 in N, S〉 → 〈Σ′,bind xp,τ = M ′
0 in N, S ′〉

then ∀Θ.S =
Θ\Ω
α S ′.

Lemma 8 (Uninterrupted high evaluation). If Σ ` M : τ, (r, w)⇒ Σ′

and α 6 ·̂Ωw and ` S and 〈Σ, M, S〉 →∗ 〈Σ′, v, S ′〉 then ∀Θ.S =
Θ\Ω
α S ′.

Proof. We prove this by induction on the length of the derivation. We have
two cases: Either (1) M is a value, or (2) we can reduce M .

Case: 1. If M is a value, then by typing we have Σ′ = Σ, so we can take
0 steps to get S = S ′ and the conclusion holds.

Case: 2. M is not a value, so by progress we can reduce it further.
By preservation and α-Ω-high, since Σ ` M : τ, (r, w)⇒ Σ′ and ` S and

〈Σ, M, S〉 → 〈Σ′′, M ′, S ′′〉 then ∀Θ.S =
Θ\Ω
α S ′′ and M ′ ∈ HΩ

α . We can then
do 〈Σ′′, M ′, S ′′〉 →∗ 〈Σ′, v, S ′〉 and the induction hypothesis gives us

∀Θ.S ′′ =
Θ\Ω
α S ′. By transitivity we can conclude that ∀Θ.S =

Θ\Ω
α S ′.

Apart from these lemmas pertaining to high programs, we need to prove
the lemma from section 4 that connects the visibility of a policy to its guards.
We first give a helper lemma that gives an alternative interpretation of visi-
bility:

Lemma 9. α ·̂ p(Θ) ⇔ ∃(Φ ⇒ α) ∈ p.Φ ⊆ Θ

Proof. If α ·̂ p(Θ) then by definition we have {} ⇒ α ∈ p(Θ), which in
turn means that we have {} ⇒ α ∈ {Φ \Θ ⇒ β | Φ ⇒ β ∈ p}. For this to
be true we must have ∃Φ ⇒ α.Φ \Θ = {}, which means Φ ⊆ Θ.

Now we can prove the guard lemma:

Lemma 3 (Guard lemma). If α 6 ·̂p, then α 6 ·̂Ωp where Ω =
⋃

guardsα(p).

Proof. By contradiction. Assume that ∃Θ.α ·̂ p(Θ \ Ω). This means that
∃Φ ⇒ α ∈ p.Φ 6= {} and Φ ⊆ Θ \ Ω. But if Φ ⇒ α ∈ p then Φ ⊆ Ω, so we
have a contradiction.

With these lemmas in hand, we can finally move on to prove the main
lemma, that our candidate relation is a bisimulation.
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Lemma 4 (
⋃
Ω

RΩ
α is a bisimulation). If 〈Σ, M〉RΩ

α〈∆, N〉 and ` S and

〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉 & Θ ⊇ Σ & S =Θ
α T & ` T

then ` S ′, and there exists ∆′, N ′, T ′ such that

either 〈∆, N, T 〉 →∗ 〈∆′, N ′, T ′〉 & ` T ′

& S ′ =
Θ\Ω
α T ′ & 〈Σ′, M ′〉RΩ′

α 〈∆′, N ′〉,

or 〈∆, N, T 〉 ⇑,

where Ω′ = Ω ∪
⋃

guardsα(p(Θ))

Proof. We will conduct the proof by induction on the size of the typing
derivation of 〈Σ, M〉.

By preservation, we already know that if we reduce a well-typed term in
the presence of a well-typed store, the resulting term and store are going to
be well-typed as well, so we will not bother about controlling either of those
facts in the rest of this proof.

In many cases we will implicitly make use of properties of the relations
=Θ

α and �, such as transitivity and monotonicity, which we discussed in the
main body of the paper.

Case: 〈Σ, M〉RΩ
α〈∆, N〉 by rule 1. We have that M = N . Without loss

of generality we will assume that M, N /∈ HΩ
α , since we will cover that when

considering rule 2. This means that M cannot be a variable, a value, a
dereferencing, a recursion, an open or a close. Remains a reference creation,
an assignment, a conditional, an application or a bind.

Subcase: M ≡ refp′ xp,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, refp′ xp,τ , S〉
>→ 〈Σ, `p′,τ , S[`p′,τ 7→ S(xp,τ )]〉 and

〈∆, refp′ xp,τ , T 〉
>→ 〈∆, `p′,τ , T [`p′,τ 7→ T (xp,τ )]〉

By typing we have

p(Σ) � p′

Σ ` refp′ xp,τ : ref p′ τ , (⊥, p′)⇒ Σ

Suppose that α ·̂ p(Θ). Then S(xp,τ ) = T (xp,τ ) and we have

S[`p′,τ 7→ S(xp,τ )] =
Θ\Ω
α T [`p′,τ 7→ T (xp,τ )]. If on the other hand we have

that α 6 ·̂ p(Θ), then S(xp,τ ) = T (xp,τ ) is not guaranteed, so to assure that
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S[`p′,τ 7→ S(xp,τ )] =
Θ\Ω
α T [`p′,τ 7→ T (xp,τ )] we require that α 6 ·̂p′(Θ \ Ω). This

follows from p(Σ) � p′. We can finally conclude 〈Σ, `p′,τ 〉RΩ
α〈∆, `p′,τ 〉 by rule

1.

Subcase: M ≡ xp,ref p′′ τ := yp′,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, xp,ref p′′ τ := yp′,τ , S〉
>→ 〈Σ, (), S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )]〉 and

〈∆, xp,ref p′′ τ := yp′,τ , T 〉
>→ 〈∆, (), T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]〉

By typing we have

p(Σ) t p′(Σ) � p′′

Σ ` xp,ref p′′ τ := yp′,τ : unit , (⊥, p′′)⇒ Σ

Now we reason by cases according to the following three exhaustive condi-
tions: (i) α ·̂ p(Θ) and α ·̂ p′(Θ), (ii) α 6 ·̂ p(Θ), and (iii) α 6 ·̂ p′(Θ).
In case (i) we have that S(xp,ref p′′ τ ) = T (xp,ref p′′ τ ) and S(yp′,τ ) = T (yp′,τ )
and thus we have

S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )] =Θ\Ω
α T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]

as required.
In case (ii) then S(xp,ref p′′ τ ) = T (xp,ref p′′ τ ) is not guaranteed, so to assure
that

S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )] =Θ\Ω
α T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]

we require that α 6 ·̂ p′′(Θ \ Ω). This follows from p(Σ) � p′′.
In case (iii) then S(yp′,τ ) = T (yp′,τ ) is not guaranteed, so to assure that

S[S(xp,ref p′′ τ ) 7→ S(yp′,τ )] =Θ\Ω
α T [T (xp,ref p′′ τ ) 7→ T (yp′,τ )]

we again require that α 6 ·̂ p′′(Θ \ Ω). This follows from p′(Σ) � p′′.
We can finally conclude 〈Σ, ()〉RΩ

α〈∆, ()〉 by rule 1.

Subcase: M ≡ if xp,bool then M0 else M1. For Θ ⊇ Σ we have S =Θ
α

T and

〈Σ, if xp,bool then M0 else M1, S〉
p→ 〈Σ, Mi, S〉 and

〈∆, if xp,bool then M0 else M1, T 〉
p→ 〈∆, Mj, T 〉

where i, j ∈ {0, 1}. By typing we have

Σ ` Mi : τ, (ri, wi)⇒ Σ′ p(Σ) � w0 u w1

Σ ` if xp,bool then M0 else M1 : τ, (p(Σ) t r0 t r1, w0 u w1)⇒ Σ′
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Assume that α ·̂ p(Θ). Then S(xp,bool) = T (xp,bool) which means that
i = j and

⋃
guardsα(p(Θ)) = {}. We have Mi = Mj and we can conclude

〈Σ, Mi〉RΩ
α〈∆, Mj〉 by rule 1.

Assume now instead that α 6 ·̂ p(Θ). Then S(xp,bool) = T (xp,bool) is not
guaranteed, and thus possibly Mi 6= Mj. But since α 6 ·̂ p(Θ), by the guard

lemma we have that α 6 ·̂Ω′
p(Θ) where Ω′ =

⋃
guardsα(p(Θ)), and further

since p(Σ) � wi and Θ ⊇ Σ we have that α 6 ·̂Ω′
(wi). This means that

Mi, Mj ∈ HΩ∪Ω′
α and we can conclude 〈Σ, Mi〉RΩ∪Ω′

α 〈∆, Mj〉 by rule 2.

Subcase: M ≡ xp,τf
yp′,τ ′ where τf = (τ ′, p′)

Σ,rf ,wf ,Σ′

−−−−−−→ τ . For Θ ⊇
Σ we have S =Θ

α T and

〈Σ, xp,τf
yp′,τ ′ , S〉

p→ 〈Σ, M0, S[zp′,τ ′ 7→ S(yp′,τ ′)]〉, and

〈∆, xp,τf
yp′,τ ′ , T 〉

p→ 〈∆, M1, T [wp′,τ ′ 7→ S(yp′,τ ′)]〉

where S(xp,τf
) = λzp′,τ ′ .M0 and T (xp,τf

) = λwp′,τ ′ .M1. By typing we have

p(Σ) � wf

Σ ` xp,τf
yp′,τ ′ : τ, (p(Σ) t rf , wf )⇒ Σ′

Assume that α ·̂ p(Θ). Then S(xp,τf
) = T (xp,τf

), which in turn means
that zp′,τ ′ = wp′,τ ′ and M0 = M1. It also means that

⋃
guardsα(p(Θ)) = {},

and we can conclude 〈Σ, M0〉RΩ
α〈∆, M1〉 by rule 1.

We have S[zp′,τ ′ 7→ S(yp′,τ ′)] =
Θ\Ω
α T [zp′,τ ′ 7→ T (yp′,τ ′)] since if α ·̂ p′(Θ)

then S(yp′,τ ′) = T (yp′,τ ′).

Assume now instead that α 6 ·̂ p(Θ). Then S(xp,τf
) = T (xp,τf

) is not
guaranteed, and thus possibly M0 6= M1. But since α 6 ·̂ p(Θ), by the guard
lemma we have that α 6 ·̂Ω′

p(Θ) where Ω′ =
⋃

guardsα(p(Θ)), and further
since p(Σ) � wf and Θ ⊇ Σ we have that α 6 ·̂Ω′

(wf ). This means that
M0, M1 ∈ HΩ∪Ω′

α and we can conclude 〈Σ, M0〉RΩ∪Ω′
α 〈∆, M1〉 by rule 2. We

have S[zp′,τ ′ 7→ S(yp′,τ ′)] =
Θ\Ω
α T [wp′,τ ′ 7→ S(yp′,τ ′)] since the equivalence

relation doesn’t care about variables not in the intersection of the domains
of the two stores.

Subcase: M ≡ E[bind xp,τ = M0 in M1]. Here we must proceed by

inspection of M0. For all terms we have by typing of the inner term that

Σ ` M0 : τ, (r0, w0)⇒ Σ′ Σ′ ` M1 : τ1, (r1, w1)⇒ Σ′′ r0(Σ
′) � p

Σ ` bind xp,τ = M0 in M1 : τ1, (r1, w0 u w1)⇒ Σ′′
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Subsubcase: M0 ≡ v. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = v in M1], S〉
>→ 〈Σ, E[M1], S[xp,τ 7→ v]〉 and

〈∆, E[bind xp,τ = v in M1], T 〉
>→ 〈∆, E[M1], T [xp,τ 7→ v]〉

We have that S[xp,τ 7→ v] =
Θ\Ω
α T [xp,τ 7→ v] and we can conclude

〈Σ, E[M1]〉RΩ
α〈∆, E[M1]〉 by rule 1.

Subsubcase: M0 ≡ yp′,τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = yp′,τ in M1], S〉
p′→ 〈Σ, E[bind xp,τ = S(yp′,τ ) in M1], S〉 and

〈∆, E[bind xp,τ = yp′,τ in M1], T 〉
p′→ 〈∆, E[bind xp,τ = T (yp′,τ ) in M1], T 〉

Assume α ·̂ p′(Θ). Then S(yp′,τ ) = T (yp′,τ ) and we can conclude (by
rule 1) that

〈Σ, E[bind xp,τ = S(yp′,τ ) in M1]〉RΩ
α〈∆, E[bind xp,τ = T (yp′,τ ) in M1]〉.

Assume now instead that α 6 ·̂ p′(Θ). Then S(yp′,τ ) = T (yp′,τ ) is not
guaranteed, so we could end up with two different values. By the guard
lemma we know that α 6 ·̂Ω′

p′(Θ) where Ω′ =
⋃

guardsα(p′(Θ)). By typing
we know that p′(Σ) � p, so this means that α 6 ·̂Ω′

p(Θ), and we can conclude
(by rule 3) that

〈Σ, E[bind xp,τ = S(yp′,τ ) in M1]〉RΩ
α〈∆, E[bind xp,τ = T (yp′,τ ) in M1]〉.

Subsubcase: M0 ≡ refp′′ yp′,τ ′ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,ref p′′ τ ′ = refp′′ yp′,τ ′ in M1], S〉
p′→

〈Σ, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1], S[`p′′,τ ′ 7→ S(yp′,τ ′)]〉

and

〈∆, E[bind xp,ref p′′ τ ′ = refp′′ yp′,τ ′ in M1], T 〉
p′→

〈∆, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1], T [`p′′,τ ′ 7→ T (yp′,τ ′)]〉

We reason that we have the required equality on the memories like we
did for the reference creation at top level. We can conclude (by rule 1) that

〈Σ, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1]〉RΩ
α〈∆, E[bind xp,ref p′′ τ ′ = `p′′,τ ′ in M1]〉.
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Subsubcase: M0 ≡!yp′,ref p′′ τ . For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = !yp′,ref p′′ τ in M1], S〉
p′up′′→

〈Σ, E[bind xp,τ = S(S(yp′,ref p′′ τ )) in M1], S〉

and

〈∆, E[bind xp,τ = !yp′,ref p′′ τ in M1], T 〉
p′up′′→

〈∆, E[bind xp,τ = T (T (yp′,ref p′′ τ )) in M1], T 〉

By typing we know that

Σ ` !yp′,ref p′′ τ : τ, (p′(Σ) t p′′(Σ),>)⇒ Σ

Assume α ·̂ p′(Θ) and α ·̂ p′′(Θ). Then S(S(yp′,ref p′′ τ )) = T (T (yp′,ref p′′ τ ))
and we can conclude (by rule 1) that

〈Σ, E[bind xp,τ = S(S(yp′,ref p′′ τ )) in M1]〉RΩ
α

〈∆, E[bind xp,τ = T (T (yp′,ref p′′ τ )) in M1]〉.

Assume now instead that α 6 ·̂p′(Θ) or α 6 ·̂p′′(Θ). Then we cannot guaran-
tee S(S(yp′,ref p′′ τ )) = T (T (yp′,ref p′′ τ )), so we could end up with two different

values. By the guard lemma we know that α 6 ·̂Ω′
p′(Θ) and α 6 ·̂Ω′′

p′′(Θ) where
Ω′ = guardsα(p′(Θ)) and Ω′′ = guardsα(p′′(Θ)). But since p′(Σ)t p′′(Σ) � p
and Θ ⊃ Σ we know that α 6 ·̂Ω′∪Ω′′

p and thus we can conclude (by rule 3)
that

〈Σ, E[bind xp,τ = S(S(yp′,ref p′′ τ )) in M1]〉RΩ∪Ω′∪Ω′′

α

〈∆, E[bind xp,τ = T (T (yp′,ref p′′ τ )) in M1]〉.

Subsubcase: M0 ≡ yp′,ref p′′ τ := zp′,τ . For Θ ⊇ Σ we have S =Θ
α T

and

〈Σ, E[bind xp,unit = yp′,ref p′′ τ := zp′,τ in M1], S〉
>→

〈Σ,bind xp,unit = () in M1, S[S(yp′,ref p′′ τ ) 7→ S(zp′,τ )]〉

and

〈∆, E[bind xp,unit = yp′,ref p′′ τ := zp′,τ in M1], T 〉
>→

〈∆,bind xp,unit = () in M1, T [T (xp′,ref p′′ τ ) 7→ T (zp′,τ )]〉
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We reason that we have the required equality on the memories like we
did for the assignment at top level. We can conclude (by rule 1) that

〈Σ, E[bind xp,unit = () in M1]〉RΩ
α〈∆, E[bind xp,unit = () in M1]〉.

Subsubcase: M0 ≡ if yp′,bool then N0 else N1. For Θ ⊇ Σ we have
S =Θ

α T and

〈Σ, E[bind xp,τ = if yp′,bool then N0 else N1 in M1], S〉
p′→

〈Σ, E[bind xp,τ = Ni in M1], S〉

and

〈∆, E[bind xp,τ = if yp′,bool then N0 else N1 in M1], T 〉
p′→

〈∆, E[bind xp,τ = Nj in M1], T 〉

Assume α ·̂ p′(Θ). Then Ni = Nj and we conclude (by rule 1) that

〈Σ, E[bind xp,τ = Ni in M1]〉RΩ
α〈∆, E[bind xp,τ = Nj in M1]〉

Assume now instead that α 6 ·̂ p′(Θ), then possibly Ni 6= Nj. By the

guard lemma we know α 6 ·̂Ω′
p′(Θ) where Ω′ =

⋃
guardsα(p′(Θ)). By the same

reasoning as for a conditional at top level we know that 〈Σ, Ni〉RΩ∪Ω′
α 〈∆, Nj〉.

By p′(Σ) � p and Θ ⊇ Σ we know α 6 ·̂Ω′
p, and we can conclude (by rule

3) that

〈Σ, E[bind xp,τ = Ni in M1]〉RΩ∪Ω′

α 〈∆, E[bind xp,τ = Nj in M1]〉.

Subsubcase: M0 ≡ yp′,τf
zp′′,τ ′ where τf = (τ ′, p′′)

Σ,rf ,wf ,Σ′

−−−−−−→ τ . For
Θ ⊇ Σ we have S =Θ

α T and

〈Σ, yp′,τf
zp′′,τ ′ , S〉

p′→ 〈Σ, N0, S[wp′′,τ ′ 7→ S(zp′′,τ ′)]〉 and

〈∆, yp′,τf
zp′′,τ ′ , T 〉

p→ 〈∆, N1, T [w′
p′′,τ ′ 7→ T (zp′′,τ ′)]〉

where S(yp′,τf
) = λwp′′,τ ′ .N0 and T (yp′,τf

) = λw′
p′′,τ ′ .N1.

We reason that we have the required equality on memories like we did for
application at top level.

Assume α ·̂ p′(Θ). Then N0 = N1 and we conclude (by rule 1) that

〈Σ, E[bind xp,τ = N0 in M1]〉RΩ
α〈∆, E[bind xp,τ = N1 in M1]〉.
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Assume now instead that α 6 ·̂p′(Θ), then possibly N0 6= N1. By the guard
lemma we know α 6 ·̂Ω′

p′(Θ) where Ω′ =
⋃

guardsα(p′(Θ)). By the same rea-
soning as for an assignment at top level we know that 〈Σ, N0〉RΩ∪Ω′

α 〈∆, N1〉.
By p′(Σ) � p and Θ ⊇ Σ we know α 6 ·̂Ω′

p, and we can conclude (by rule
3) that

〈Σ, E[bind xp,τ = N0 in M1]〉RΩ∪Ω′

α 〈∆, E[bind xp,τ = N1 in M1]〉.

Subsubcase: M0 ≡ open σ. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = open σ in M1], S〉 → 〈Σ ∪ {σ},bind xp,τ = () in M1, S〉

and

〈∆, E[bind xp,τ = open σ in M1], T 〉 → 〈∆ ∪ {σ},bind xp,τ = () in M1, T 〉

We can conclude (by rule 1) that

〈Σ ∪ {σ}, E[bind xp,τ = () in M1]〉RΩ
α〈∆ ∪ {σ}, E[bind xp,τ = () in M1]〉.

Subsubcase: M0 ≡ close σ. Similar to the previous case.

Subsubcase: M0 ≡ rec y⊥,τ .v. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = rec y⊥,τ .v in M1], S〉 →
〈Σ ∪ {σ},bind xp,τ = v in M1, S[y⊥,τ 7→ v]〉

and

〈∆, E[bind xp,τ = rec y⊥,τ .v in M1], T 〉 →
〈∆ ∪ {σ},bind xp,τ = v in M1, T [y⊥,τ 7→ v]〉

By typing of M0 we know

Σ ` v : τ, (⊥,>)⇒ Σ

Σ ` rec y⊥,τ .v : τ, (⊥,>)⇒ Σ

and we have S[y⊥,τ 7→ v] =
Θ\Ω
α T [y⊥,τ 7→ v]. We can conclude (by rule 1)

that

〈Σ, E[bind xp,τ = v in M1]〉RΩ
α〈∆, E[bind xp,τ = v in M1]〉.
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Case: 〈Σ, M〉RΩ
α〈∆, N〉 by rule 2. We have that M, N ∈ HΩ

α .

For Θ ⊇ Σ we have S =Θ
α T and 〈Σ, M, S〉 p→ 〈Σ′, M ′, S ′〉. By the highness

lemma we know that S ′ =
Θ\Ω
α S, and so we can choose to match this by

taking 0 steps for N , i.e. 〈∆, N, T 〉 →0 〈∆, N, T 〉, and since S =
Θ\Ω
α T ,

by transitivity we have S ′ =
Θ\Ω
α T as required. By lemma 6 we know that

subject reduction preserves the highness property, so we have M ′ ∈ HΩ
α ,

and thus M ′, N ∈ HΩ′
α where Ω′ = Ω ∪

⋃
guardsα(p(Θ)) and we conclude

〈Σ′, M ′〉RΩ′
α 〈∆, N〉 by rule 2.

Case: 〈Σ, M〉RΩ
α〈∆, N〉 by rule 3. We have that

M = E[bind xp,τ = M0 in M1] and N = E[bind xp,τ = N0 in M1] and that
〈Σ, M0〉RΩ

α〈∆, N0〉 and α 6 ·̂Ωp. Here we can separate two cases — either M0

is a value, or we can reduce in M0.

Subcase: M0 ≡ v. For Θ ⊇ Σ we have S =Θ
α T and

〈Σ, E[bind xp,τ = v in M1], S〉
>→ 〈Σ, E[M1], S[xp,τ 7→ v]〉

If M0 is a value, then by lemma 5 we have N0 is high. We have that either
〈∆, N0, T 〉 ⇑, in which case we have 〈∆, N, T 〉 ⇑, or 〈∆, N0, T 〉 →∗ 〈∆′, v′, T ′〉.
In the latter case we have ∀Θ.T =

Θ\Ω
α T ′ by lemma bigstep high and by

transitivity that S =
Θ\Ω
α T ′. This means we can match the step in M by

〈∆, E[bind xp,τ = N0 in M1], T 〉 →∗ 〈∆′, E[bind xp,τ = v′ in M1], T
′〉 →

〈∆′, E[M1], T
′[xp,τ 7→ v′]〉

Since we know α 6 ·̂Ωp we have S[xp,τ 7→ v] =
Θ\Ω
α T ′[xp,τ 7→ v′]. We can

conclude (by rule 1) that 〈Σ, E[M1]〉RΩ
α〈∆′, E[M1]〉 .

Subcase: M0 /∈ Val. By the progress lemma this means we can re-

duce M0, so for Θ ⊇ Σ we have S =Θ
α T and 〈Σ, M0, S〉

p′→ 〈Σ′, M ′
0, S

′〉. By
the induction hypothesis we have that

either ∃∆′, N ′
0, T

′.〈∆, N0, T 〉 →∗ 〈∆′, N ′
0, T

′〉 and S ′ =
Θ\Ω
α T ′

and 〈Σ′, M ′
0〉RΩ′

α 〈∆′, N ′
0〉 where Ω′ = Ω ∪ guardsα(p′(Θ)),

or 〈∆, N0, T 〉 ⇑.

In the latter case we have

〈∆, E[bind xp,τ = N0 in M1], T 〉 ⇑
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For the former case we can choose to match the reduction in M by

〈∆, E[bind xp,τ = N0 in M1], T 〉 →∗ 〈∆′, E[bind xp,τ = N ′
0 in M1], T

′〉

and we conclude

〈Σ′, E[bind xp,τ = M ′
0 in M1]〉RΩ′

α 〈∆′, E[bind xp,τ = N ′
0 in M1]〉

by rule 3.

A.3 Proofs that Flow Lock Security Implies Noninter-
ference

In this appendix we provide details of the proof that flow lock security implies
noninterference. The strategy is to

• Strengthen the definition of location indistinguishability at a given level
to include variables;

• Generalise the definition of noninterference to a binary relation between
pairs of programs, and strengthen to include variables in the store;

• Specialise the definition of α indistinguishability to lock-free policies.

• Specialise the definition of flow lock bisimulation to lock-free programs
and stores.

Recall that we consider a lattice of security levels 〈L,v,t〉, and a policy
level : Loc → L that fixes the intended security level of the storage locations
in the program.

We assume that these locations are typed, but we will elide typing issues
in the following discussion. Programs P and Q operate over these locations,
and are assumed to be of unit type, and are assumed not to perform any
location allocation.

To be precise we need to define the lock-free semantics for configurations
of the form 〈P, S〉. But it is easy to see that if P is lock free then the lock part
of the state can simply be ignored since it neither influences computation nor
does it change, so transitions for 〈P, S〉 re derived by simply projecting out
the lock state in the transition system.

Definition 8 (Noninterference (Generalised)). Given two stores S and
T , and a level k ∈ L, define S and T to be indistinguishable at level k,
written S ≡k T , iff the location domains of S and T are the same, and for
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all ` ∈ dom(S) and for all x ∈ domS ∩ domT such that level(`) v k we have
S(`) = T (`). and S(x) = T (x).

Now define, for each level k, the binary relation ∼NI
k on lock-free pro-

grams as follows: P ∼NI
k Q if for all S and T such that S ≡k T , when-

ever 〈P, S〉 and 〈Q, T 〉 are terminating configurations, 〈P, S〉 →∗ 〈(), S ′〉 and
dom(S ′)\dom(S) ∩ dom(T ) = {} and S ≡k T , then there exists a T ′ such
that 〈Q, T 〉 →∗ 〈(), T ′〉, and S ′ ≡k T ′.

The following lemma states that these definitions are indeed generalisa-
tions, and can be seen by inspection of the definitions:

Lemma 10. 1. For all lock free stores S and T , S ≡k T implies S =k T .

2. For all closed (i.e. variable free) lock free programs P , if P ∼NI
k P for

all k, then P is noninterfering.

Now we build a bridge from the opposite side, by specialising the defi-
nition of flow lock security to lock-free programs. Firstly we note that for
lock free stores, level indistinguishability ≡k given above coincides with the
indistinguishability relation =Θ

k for any Θ, i.e.

Lemma 11. S =Θ
k T ⇐⇒ S ≡k T

The proof is again just by inspection of the definition, so we omit a
detailed argument. Now we turn to the definition of bisimulation for lock-
free programs.

Lemma 12. Define the largest symetric relation between lock-free programs,
≈k, such that whenever

P ≈k Q & S ≡k T & dom(S ′)\dom(S) ∩ dom(T ) = {} & 〈P, S〉 → 〈P ′, S ′〉

then there exits Q′, T ′ such that

either 〈Q, T 〉 → 〈Q′, T ′〉 & S ≡k T & P ′ ≈k Q′,

or 〈Q, T 〉 ⇑,

Then we have that 〈Σ, P 〉 ∼Ω
α 〈∆, Q〉 implies P ≈k Q.

The proof is again straightforward by specialisation of the bisimulation
definition, and using the preceeding lemma.

Now we can provide the proof that if P is flow lock secure then P is
noninterfering.
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Proof. (Theorem 1) Suppose that closed program P is flow lock secure. I.e.
for all levels k 〈{}, P 〉 ∼k 〈{}, P 〉. By lemma 12 this implies that P ≈k P .
We will prove that P ≈k P implies P ≡k P , from which it follows that P is
noninterferring by lemma 10.

In order to prove that P ≈k P implies P ≡k P we will prove the more
general statement, namely that

∀P, Q.P ≈k Q =⇒ P ≡k Q

i.e. we prove this for open P and Q.
Assume that P ≈k Q and that 〈P, S〉 →n 〈(), S ′〉, 〈Q, T 〉 is terminating,

S ≡k T and
dom(S ′)\dom(S)∩dom(T ) = {}. We are then required to show that 〈Q, T 〉 →n

〈(), T ′〉 for some T ′ such that S ′ ≡k T ′, and we do so by induction by induc-
tion on n

Base case: n = 0. In this case P = () and hence S = S ′. By the conver-
gence assumption we know that 〈Q, T 〉 → · · · → 〈Qi, Ti〉 → · · · → 〈(), Tm〉
for some stores Ti, and since we are free to choose store variable names, we
can assume that dom(Ti) \ dom(T ) ∩ dom(S) = {}. By symmetry Q ≈k P ,
and thus from the definition of ≈k, each of these computation steps from can
only be matched by taking zero steps from 〈P, S〉, and hence S ≡k Tm as
required.

Inductive case: 〈P, S〉 → 〈P1, S1〉 →∗ 〈(), S ′〉. Since dom(S ′)\dom(S)∩
dom(T ) = {}, and since computation only increases the domain of the store,
dom(S ′) ⊆ dom(S1), and hence dom(S1)\dom(S) ∩ dom(T ) = {}. Given
this, by assumption that P ≈k Q and from the fact that 〈Q, T 〉 does not
diverge, we know that 〈Q, T 〉 →∗ 〈Q1, T1〉 for some T1 such that S1 ≡k T1.
Since dom(S ′)\dom(S) ∩ dom(T ) = {} and dom(S1) ⊇ dom(S) it follows
that dom(S ′)\dom(S1) ∩ dom(T ) = {}. Now we know that dom(T1) =
dom(T )∪X for some set of variables X. We can assume that X is chosen to be
disjoint from dom(S ′)\dom(S1), and hence we have that dom(S ′)\dom(S1)∩
dom(T1) = {}. Now we can apply the induction hypothesis to obtain the
existance of a T ′ such that 〈Q1, T1〉 →∗ 〈(), T ′〉 S1 ≡k T1 as required.
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